Cho ∆1: x – 2y + 3 = 0 và ∆2: – 2x – y + 5 = 0. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là
Lời giải Bài 37 trang 81 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 37 trang 81 SBT Toán 10 Tập 2: Cho ∆1: x – 2y + 3 = 0 và ∆2: – 2x – y + 5 = 0. Số đo góc giữa hai đường thẳng ∆1 và ∆2 là:
A. 300;
B. 450;
C. 900;
D. 600.
Lời giải:
Ta thấy vectơ pháp tuyến của là:
Vectơ pháp tuyến của là:
Ta có:
Suy ra vuông góc với
Vậy 2 đường thẳng trên vuông góc với nhau, chọn đáp án C.
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Cánh diều hay, chi tiết khác:
Bài 38 trang 82 SBT Toán 10 Tập 2: Cho và . Số đo góc giữa hai đường thẳng ∆1 và ∆2 là...
Bài 40 trang 82 SBT Toán 10 Tập 2: Xét vị trí tương đối của mỗi cặp đường thẳng sau: a) d1: 2x – 3y + 5 = 0 và d2: 2x + y – 1 = 0...
Bài 41 trang 82 SBT Toán 10 Tập 2: Tìm số đo góc giữa hai đường thẳng của mỗi cặp đường thẳng sau: a) ∆1: 3x + y – 5 = 0 và ∆2: x + 2y – 3 = 0...
Bài 42 trang 82 SBT Toán 10 Tập 2: Tính khoảng cách từ một điểm đến một đường thẳng trong các trường hợp sau: a) A(- 3; 1) và ∆1: 2x + y – 4 = 0...
Bài 44 trang 82 SBT Toán 10 Tập 2: Cho hai đường thẳng ∆1: mx – 2y – 1 = 0 và ∆2: x – 2y + 3 = 0. Với giá trị nào của tham số m thì: a) ∆1 // ∆2...
Bài viết liên quan
- Giải Sách bài tập Toán 10 Cánh diều Bài 3: Phương trình đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
- Giải Sách bài tập Toán 10 Cánh diều Bài 5: Phương trình đường tròn
- Giải Sách bài tập Toán 10 Cánh diều Bài 6: Ba đường conic
- Giải Sách bài tập Toán 10 Cánh diều Bài tập cuối chương 7