Trắc nghiệm Toán học 9 Chương 4 Đại Số có đáp án năm 2021 - 2022

Bộ câu hỏi trắc nghiệm Toán học lớp 9 có đáp án, chọn lọc năm 2021 – 2022 mới nhất gồm các câu hỏi trắc nghiệm đầy đủ các mức độ nhận biết, thông hiểu, vận dụng, vận dung cao. Hy vọng với tài liệu trắc nghiệm Toán học lớp 9 sẽ giúp học sinh củng cố kiến thức, ôn tập và đạt điểm cao trong các bài thi trắc nghiệm môn Toán học 9

522
  Tải tài liệu

Trắc nghiệm Toán học 9 Chương 4 Đại Số

Câu 1: Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4x2 + 9 = 0

A. 0

B. 1

C. 3

D. 2

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Nên số nghiệm của phương trình là 2.

Chọn đáp án D.

Câu 2: Kết luận nào sau đây sai khi nói về đồ thị hàm số y = ax2 với a ≠ 0

A. Đồ thị hàm số nhận trục tung làm trục đối xứng.

B. Với a > 0 đồ thị nằm phía trên trục hoành và O là điểm cao nhất của đồ thị

C. Với a < 0 đồ thị nằm phía dưới trục hoành và O là điểm cao nhất của đồ thị

D. Với a > 0 đồ thị nằm phía trên trục hoành và là O điểm thấp nhất của đồ thị

Đồ thị hàm số y = ax2 (a ≠ 0) là một parabol đi qua gốc tọa độ O, nhận Oy làm trục đối xứng (O là đỉnh của parabol). • Nếu a < 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị • Nếu a > 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị

Chọn đáp án B.

Câu 3: Giá trị của hàm số y = f(x) = -7x2 tại x0 = -2 là:

A. 28

B. 12

C. 21

D.

Thay x0 = -2 vào hàm số y = f(x) = -7x2 ta được: y = f(-2) = -7.(-2)2 = -28

Chọn đáp án D.

Câu 4: Cho hàm số y = f(x) = (-2m + 1)x2 . Tính giá trị của m để đồ thị đi qua điểm A(-2; 4)

A. m = 0

B. m = 1

C. m = 2

D. m = -2

Thay tọa độ điểm A(-2; 4) vào hàm số y = f(x) = (-2m + 1)x2 ta được: (-2m + 1).(-2)2 = 4 ⇔ - 2m + 1 = 1 ⇔ m = 0 Vậy m = 0 là giá trị cần tìm.

Chọn đáp án A.

Câu 5: Cho hàm số y = f(x) = -2x2. Tổng các giá trị của a thỏa mãn f(a) = -8 + 4√3 là:

A. 1

B. 0

C. 10

D.

Thay a vào hàm số y = f(x) = -2x2 ta được: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án Tổng các giá trị của a là: √3 - 1 + 1 - √3 = 0

Chọn đáp án B.

Câu 6: Phương trình nào dưới đây là phương trình bậc hai một ẩn:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Phương trình bậc hai một ẩn (hay gọi tắt là phương trình bậc hai) là phương trình có dạng: ax2 + bx + c = 0 (a ≠ 0) trong đó a, b, c là các số thực cho trước, x là ẩn số.

Chọn đáp án B.

Câu 7: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Phương trình đã cho vô nghiệm khi:

A. Δ < 0

B. Δ = 0

C. Δ ≥ 0

D. Δ ≤ 0

Xét phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A.

Câu 8: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 - 4ac. Khi đó phương trình có hai nghiệm là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xét phương trình bậc hai một ẩn và biệt thức

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 9: Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6x2 - 7x = 0

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 10: Cho hàm số y = ax2 với a ≠ 0 . Kết luận nào sau đây là đúng:

A. Hàm số nghịch biến khi a > 0 và x > 0

B. Hàm số nghịch biến khi a < 0 và x < 0

C. Hàm số nghịch biến khi a > 0 và x < 0

D. Hàm số nghịch biến khi a > 0 và x = 0

Cho hàm số • Nếu a > 0 thì hàm số nghịch biến khi x < 0 và đồng biến khi x > 0 • Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0

Chọn đáp án C.

Câu 11: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = b'2 - ac. Phương trình đã cho có hai nghiệm phân biệt khi:

A. Δ' > 0

B. Δ' = 0

C. Δ' ≥ 0

D. Δ' ≤ 0

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = b'2 - ac:

• TH1: Nếu Δ' < 0 thì phương trình vô nghiệm

• TH2: Nếu Δ' = 0 thì phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

• TH3: Nếu Δ' > 0 thì phương trình có hai nghiệm phân biệt x1,2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A.

Câu 12: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = b'2 - ac. Nếu Δ' = 0 thì:

A. Phương trình có hai nghiệm phân biệt

B. Phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

C. Phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

D. Phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b'; Δ' = b'2 - ac:

Nếu Δ' = 0 thì phương trình có nghiệm kép x1 = x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 13: Tính Δ' và tìm số nghiệm của phương trình 7x2 - 12x + 4 = 0

A. Δ' = 6 và phương trình có hai nghiệm phân biệt

B. Δ' = 8 và phương trình có hai nghiệm phân biệt

C. Δ' = 8 và phương trình có nghiệm kép

D. Δ' = 0 và phương trình có hai nghiệm phân biệt

Phương trình 7x2 - 12x + 4 = 0 có a = 7; b' = -6; c = 4 suy ra:

Δ' = (b')2 - ac = (-6)2 - 4.7 = 8 > 0

Nên phương trình có hai nghiệm phân biệt.

Chọn đáp án B.

Câu 14: Tìm m để phương trình 2mx2 - (2m + 1)x - 3 = 0 có nghiệm là x = 2

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 15: Tính Δ' và tìm nghiệm của phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án D.

Câu 16: Chọn phát biểu đúng. Phương trình ax2 + bx + c (a ≠ 0) có hai nghiệm x1; x2. Khi đó:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Cho phương trình bậc hai ax2 + bx + c (a ≠ 0).

Nếu x1; x2 là hai nghiệm của phương trình thì:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án A.

Câu 17: Chọn phát biểu đúng: Phương trình ax2 + bx + c (a ≠ 0) có a - b + c = 0 . Khi đó:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án C.

Câu 18: Cho hai số có tổng là S và tích là P với S2 ≥ 4P. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:

A. X2 - PX + S = 0

B. X2 - SX + P = 0

C. SX2 - X + P = 0

D. X2 - 2SX + P = 0

Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X2 - SX + P = 0 (ĐK: S2 ≥ 4P)

Chọn đáp án B.

Câu 19: Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình x2 - 6x + 7 = 0

A. 1/6

B. 3

C. 6

D. 7

Phương trình x2 - 6x + 7 = 0 có Δ = (-6x)2 - 4.1.7 = 8 > 0 nên phương trình có hai nghiệm x1; x2

Theo hệ thức Vi-ét ta có: x1 + x2 = Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án = 6 ⇔ x1 + x2 = 6

Chọn đáp án C.

Câu 20: Gọi x1; x2 là nghiệm của phương trình x2 - 5x + 2 = 0. Không giải phương trình, tính giá trị của biểu thức A = x12 + x22

A. 20

B. 21

C. 22

D. 23

Phương trình x2 - 5x + 2 = 0 có hai nghiệm x1; x2

Theo hệ thức Vi-ét ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 21: Phương trình x4 - 6x2 - 7 = 0 có bao nhiêu nghiệm

A. 0

B. 1

C. 2

D. 4

Đặt x2 = t (t ≥ 0) ta được phương trình t2 - 6t - 7 = 0 (*)

Nhận thấy a - b + c = 1 + 6 - 7 = 0 nên phương trình (*) có hai nghiệm

t1 = -1(L); t2 = 7(N)

Với t = 7 ta có x2 = 7 ⇔ x = ± √7

Vậy phương trình đã cho có hai nghiệm.

Chọn đáp án C.

Câu 22: Phương trình (x + 1)4 - 5(x + 1)2 - 84 = 0 có tổng các nghiệm là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 23: Phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án có số nghiệm là:

A. 2

B. 1

C. 0

D. 3

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Suy ra phương trình đã cho vô nghiệm.

Chọn đáp án C.

Câu 24: Phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án có nghiệm là:

A. x = √2

B. x = 2

C. x = 3

D. x = 5

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy phương trình có nghiệm là x = 5

Chọn đáp án D.

Câu 25: Tích các nghiệm của phương trình (x2 + 2x - 5)2 = (x2 - x + 5)2 là:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Câu 26: Đường thẳng d: y = mx + n và parabol (P): y = ax2 (a ≠ 0) tiếp xúc với nhau khi phương trình ax2 = mx + n có:

A. Hai nghiệm phân biệt

B. Nghiệm kép

C. Vô nghiệm

D. Có hai nghiệm âm

Đường thẳng d và parabol (P) tiếp xúc với nhau khi phương trình ax2 = mx + n ⇔ ax2 - mx - n = 0 có nghiệm kép (Δ = 0)

Chọn đáp án B.

Câu 27: Chọn khẳng định đúng. Nếu phương trình ax2 = mx + n vô nghiệm thì đường thẳng d: y = mx + n và parabol (P): y = ax2

A. Cắt nhau tại hai điểm

B. Tiếp xúc với nhau

C. Không cắt nhau

D. Cắt nhau tại gốc tọa độ

Đường thẳng d: y = mx + n và parabol (P): y = ax2 không cắt nhau thì phương trình ax2 = mx + n vô nghiệm.

Chọn đáp án C

Câu 28: Số giao điểm của đường thẳng d: y = 2x + 4 và parabol (P): y = x2là:

A. 2

B. 1

C. 0

D. 0

Xét phương trình hoành độ giao điểm x2 = 2x + 4 ⇔ x2 - 2x - 4 = 0 có Δ' = 5 > 0 nên phương trình có hai nghiệm phân biệt hay đường thẳng cắt parabol tại hai điểm phân biệt.

Chọn đáp án A.

Câu 29: Tìm tham số m để đường thẳng Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án tiếp xúc với parabol Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án D.

Câu 30: Tìm tham số m để đường thẳng d: mx + 2 cắt parabol Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án tại hai điểm phân biệt:

A. m = 2

B. m = -2

C. m = 4

D. m ∈ R

Xét phương trình hoành độ giao điểm Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án Nên đường thẳng cắt parabol tại hai điểm phân biệt với

Chọn đáp án D.

Câu 31: Cho hai số tự nhiên biết rằng hai lần số thứ nhất hơn ba lần số thứ hai là 9 và hiệu các bình phương của chúng bằng 119. Tìm số lớn hơn.

A. 12

B. 13

C. 32

D. 33

Gọi số thứ nhất là a; a ∈ N, số thứ hai là b; b ∈ N Vì hai lần số thứ nhất hơn ba lần số thứ hai là 9 nên ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án Vì hiệu các bình phương của chúng bằng 119 nên ta có phương trình: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án Vậy số lớn hơn là 12.

Chọn đáp án A.

Câu 32: Tích của hai số tự nhiên liên tiếp lớn hơn tổng của chúng là 109. Tìm số bé hơn.

A. 12

B. 13

C. 32

D. 11

Gọi số bé hơn là a; a ∈ N* thì số lớn hơn là a + 1 Vì tích của hai số tự nhiên liên tiếp lớn hơn tổng của chúng là 109 nên ta có phương trình: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án Vậy số bé hơn là 11.

Chọn đáp án D.

Câu 33: Một hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Nếu cả chiều dài và chiều rộng cùng tăng thêm 5cm thì được một hình chữ nhật mới có diện tích bằng 153 cm2. Tìm chu vi hình chữ nhật ban đầu.

A. 16

B. 32

C. 34

D. 36

Gọi x là chiều rộng hình chữ nhật lúc đầu (x > 0) (cm)

Chiều dài hình chữ nhật lúc đầu: 3x (cm)

Chiều rộng hình chữ nhật lúc sau: x + 5 (cm)

Chiều dài hình chữ nhật lúc sau: 3x + 5 (cm)

Theo đề bài ta có phương trình: (x + 5)(3x + 5) = 153

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy chiều dài và chiều rộng hình chữ nhật ban đầu là: 12 cm và 4 cm

Suy ra chu vi hình chữ nhật ban đầu là: (12 + 4).2 = 32 (cm)

Chọn đáp án B.

Câu 34: Cho tam giác vuông có cạnh huyền bằng 20 cm. Hai cạnh góc vuông có độ dài hơn kém nhau 4 cm. Một trong hai cạnh góc vuông của tam giác vuông có độ dài là:

A. 16

B. 15

C. 14

D. 13

Gọi độ dài cạnh góc vuông nhỏ hơn của tam giác vuông đó là x (cm); (0 < x < 20)

Cạnh góc vuông lớn hơn của tam giác vuông có độ dài là: x + 4

Vì cạnh huyền bằng 20 cm nên theo định lý Py-ta-go ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy độ dài hai cạnh góc vuông của tam giác vuông đó lần lượt là: 12 cm và 12 + 4 = 16 cm

Chọn đáp án A.

Câu 35: Một thửa ruộng hình tam giác có diện tích 180 cm2. Tính chiều dài cạnh đáy thửa ruộng, biết rằng nếu tăng cạnh đáy lên 4m và chiều cao tương ứng giảm đi 1m thì diện tích không đổi.

A. 10

B. 35

C. 36

D. 18

Gọi độ dài cạnh đáy là x (cm) (x > 0)

Chiều cao của thửa ruộng có độ dài là: 360/x (cm)

Vì nếu tăng cạnh đáy lên 4m và chiều cao tương ứng giảm 1m đi thì diện tích không đổi nên ta có phương trình:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy chiều dài cạnh đáy của thửa ruộng có độ dài là: 36 cm

Chọn đáp án C.

Câu 36: Để hệ phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án có nghiệm, điều kiện cần và đủ là:

A. S2 - P < 0

B. S2 - P ≥ 0

C. S2 - 4P < 0

D. S2 - 4P ≥ 0

Hệ phương trình đối xứng loại 1 với cách đặt Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án điều kiện S2 ≥ 4P ⇔ S2 - 4P ≥ 0

Chọn đáp án D.

Câu 37: Hệ phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án có nghiệm là (x; y) với x > y. Khi đó tích xy bằng:

A. 0

B. 1

C. 2

D. 4

Ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án 

Vậy hệ phương trình có hai nghiệm (x; y) = (0; 2); (x; y) = (2; 0) Từ giả thiết x > y nên x = 2; y = 0 ⇒ xy = 0

Chọn đáp án A.

Câu 38: Hệ phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

A. Có 2 nghiệm (2; 3) và (1; 5)

B. Có 2 nghiệm (2; 1) và (3; 5)

C. Có 1 nghiệm là (5; 6)

D. Có 4 nghiệm (2; 3); (3; 2); (1; 5); (5; 1)

Ta có:

 Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án 

Vậy hệ phương trình có 4 nghiệm (2; 3); (3; 2); (1; 5); (5; 1)

Chọn đáp án D.

Câu 39: Hãy chỉ ra cặp nghiệm khác 0 của hệ phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

A. (3; 3)

B. (2; 2); (3; 1); (-3; 6)

C. (1; 1); (2; 2); (3; 3)

D. (-2; -2); (1; -2); (-6; 3)

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án 

Vậy nghiệm khác 0 của hệ là (3; 3).

Chọn đáp án A.

Câu 40: Hệ phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án có bao nhiêu nghiệm:

A. 6

B. 4

C. 2

D. 0

Trừ vế với vế của phương trình ta được:

 Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Chọn đáp án B.

Bài viết liên quan

522
  Tải tài liệu