Cho tứ giác ABCD. Gọi M, N, P, Q theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Gọi E là điểm bất kì nằm ngoài tứ giác, F là điểm đối xứng với E qua M, G là điểm đối xứng với F qua Q, H là điểm đối xứng với G qua P. Chứng minh rằng E là điểm đối xứng với H qua điểm N.
MGUOI GIÚP EM VỚI Ạ! CẦN GẤP
Quảng cáo
1 câu trả lời 529
Ta có EBFA, FAGD, GDHC đều là hình hành. Vậy BECH cũng là hình bình hành.
Vậy E đối xứng với H qua N.
Quảng cáo
Câu hỏi hot cùng chủ đề
-
101711
-
Hỏi từ APP VIETJACK53271
-
Cho tam giác MNP vuông tại M,đường cao MH
a, Chứng minh tam giác HMN đồng dạng với tam giác MNP
b, chứng minh hệ thức
=NH.PH
c, Lấy điểm E tùy ý trên cạnh MP,vẽ điểm F trên cạnh MN sao cho góc FHE =90 độ. Chứng minh tam giác NFH đồng dạng với tam giác MEH và góc NMH=góc FEH
d,Xác định vị trí điểm E trên MP sao cho diện tích tam giác HEF đạt giá trị nhỏ nhất
43308