Quảng cáo
3 câu trả lời 241
Để giải bài toán này, chúng ta sẽ gọi các đại lượng cần tìm và lập hệ phương trình.
Gọi:
S là quãng đường AB (đơn vị: km).
v là vận tốc xác định ban đầu của ô tô (đơn vị: km/h).
t là thời gian đã định ban đầu của ô tô (đơn vị: giờ).
Theo công thức quãng đường, vận tốc và thời gian, ta có:
S=v×t(1)
1. Lập các phương trình từ các điều kiện đã cho
Điều kiện 1: Nếu vận tốc của ô tô giảm 10 km/h thì thời gian tăng 45 phút.
Vận tốc mới: v−10 (km/h)
Thời gian mới: t+45 phút. Đổi 45 phút ra giờ: 45÷60=43 giờ.
Phương trình: S=(v−10)×(t+43)(2)
Điều kiện 2: Nếu vận tốc của ô tô tăng 10 km/h thì thời gian giảm 30 phút.
Vận tốc mới: v+10 (km/h)
Thời gian mới: t−30 phút. Đổi 30 phút ra giờ: 30÷60=21 giờ.
Phương trình: S=(v+10)×(t−21)(3)
2. Giải hệ phương trình
Thay S=v×t vào phương trình (2) và (3):
Từ phương trình (2): vt=(v−10)(t+43) vt=vt+43v−10t−10×43 vt=vt+43v−10t−215 Chuyển các số hạng không chứa vt sang một vế và nhân cả hai vế với 4 để khử mẫu: 0=43v−10t−215 0=3v−40t−30 3v−40t=30(A)
Từ phương trình (3): vt=(v+10)(t−21) vt=vt−21v+10t−10×21 vt=vt−21v+10t−5 Chuyển các số hạng không chứa vt sang một vế và nhân cả hai vế với 2 để khử mẫu: 0=−21v+10t−5 0=−v+20t−10 v−20t=10(B)
Bây giờ ta có một hệ phương trình với hai ẩn v và t:
{3v−40t=30(A)v−20t=10(B)
Từ phương trình (B), ta rút v theo t: v=10+20t. Thế v vào phương trình (A): 3(10+20t)−40t=30 30+60t−40t=30 20t=0 t=0
Lưu ý: Kết quả t=0 không có ý nghĩa trong thực tế. Điều này cho thấy cách biến đổi ban đầu (rút gọn vt ngay lập tức) có thể bỏ qua một trường hợp hoặc có một cách tiếp cận khác phù hợp hơn.
Chúng ta sẽ giải lại bằng cách thế v=S/t vào các phương trình (2) và (3) để tránh trường hợp t=0 vô nghĩa:
Từ phương trình (2): S=(tS−10)(t+43) S=S+4t3S−10t−215 0=4t3S−10t−215 Nhân cả hai vế với 4t (với t=0): 0=3S−40t2−30t 3S=40t2+30t(X)
Từ phương trình (3): S=(tS+10)(t−21) S=S−2tS+10t−5 0=−2tS+10t−5 Nhân cả hai vế với 2t (với t=0): 0=−S+20t2−10t S=20t2−10t(Y)
Bây giờ, ta có một hệ phương trình với S và t:
{3S=40t2+30t(X)S=20t2−10t(Y)
Thế S từ phương trình (Y) vào phương trình (X): 3(20t2−10t)=40t2+30t 60t2−30t=40t2+30t 60t2−40t2−30t−30t=0 20t2−60t=0 20t(t−3)=0
Phương trình này cho hai nghiệm:
20t=0⟹t=0 (loại, vì thời gian không thể bằng 0)
t−3=0⟹t=3 (nhận)
Vậy, thời gian ban đầu đã định là t = 3 giờ.
3. Tính quãng đường AB
Thế t=3 giờ vào phương trình (Y) để tìm S: S=20(3)2−10(3) S=20×9−30 S=180−30 S=150 (km
4. Kiểm tra lại (tùy chọn)
Vận tốc ban đầu: v=S/t=150/3=50 km/h.
Trường hợp 1: Giảm 10 km/h: Vận tốc mới = 40 km/h. Thời gian mới = 150/40=3,75 giờ. 3,75 giờ = 3 giờ 45 phút. (Đúng với đề bài: tăng 45 phút so với 3 giờ).
Trường hợp 2: Tăng 10 km/h: Vận tốc mới = 60 km/h. Thời gian mới = 150/60=2,5 giờ. 2,5 giờ = 2 giờ 30 phút. (Đúng với đề bài: giảm 30 phút so với 3 giờ).
Vậy, các giá trị tìm được là chính xác.
Kết luận: Quãng đường AB là 150 km.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
103437
-
Hỏi từ APP VIETJACK68807
-
56608
-
47524
-
44249
-
36842
-
35274

trình bày