Quảng cáo
2 câu trả lời 133
\[
3x^2 + 6x^2y^3 - 12xy = 3xy(x + 2xy^2 - 4)
\]
\[
\frac{3xy(x + 2xy^2 - 4)}{3xy}
\]
\[
x + 2xy^2 - 4
\]
Vậy kết quả đơn giản của biểu thức là:
\[
x + 2xy^2 - 4
\]
To simplify the expression \((3x² + 6x²y³ - 12xy) : 3xy\), we can rewrite it as:
\[
\frac{3x^2 + 6x^2y^3 - 12xy}{3xy}
\]
Now, we can simplify each term in the numerator by dividing by \(3xy\):
1. **First term:**
\[
\frac{3x^2}{3xy} = \frac{x^2}{xy} = \frac{x}{y}
\]
2. **Second term:**
\[
\frac{6x^2y^3}{3xy} = \frac{6}{3} \cdot \frac{x^2y^3}{xy} = 2 \cdot \frac{x^2y^3}{xy} = 2xy^2
\]
3. **Third term:**
\[
\frac{-12xy}{3xy} = -\frac{12}{3} = -4
\]
Now, combining these results together:
\[
\frac{x}{y} + 2xy^2 - 4
\]
Thus, the simplified expression is:
\[
\frac{x}{y} + 2xy^2 - 4
\]
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
107437
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68061 -
Đã trả lời bởi chuyên gia
52846 -
Đã trả lời bởi chuyên gia
47344 -
Đã trả lời bởi chuyên gia
45400 -
Đã trả lời bởi chuyên gia
45045 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38412 -
Đã trả lời bởi chuyên gia
38191
