Cho hình thang vuông ABCD có AB = 4 cm, BC = 13 cm, CD = 9 cm.
a) Tính độ dài đoạn thẳng AD.
b) Đường thẳng AD có tiếp xúc với đường tròn đường kính BC hay không? Vì sao?
Quảng cáo
1 câu trả lời 96

Kẻ BH vuông góc với CD tại H, gọi I là trung điểm của đoạn thẳng BC, kẻ IK vuông góc với AD tại K, gọi M là giao điểm của IK và BH.
Do IK ⊥ AD nên
ABCD là hình thang vuông có nên AB ⊥ AD, CD ⊥ AD.
Mà IK ⊥ AD nên IK // AB // CD.
Lại có BH ⊥ CD nên BH ⊥ IK tại M.
Tứ giác ABHD có suy ra ABHD là hình chữ nhật.
Tứ giác ABMK có suy ra ABMK là hình chữ nhật.
a) Do tứ giác ABHD là hình chữ nhật nên AD = BH và DH = AB = 4 cm.
Ta có: CH = CD ‒ DH = 9 – 4 = 5 cm.
Xét ∆BCH vuông tại H, theo định lí Pythagore, ta có: BC2 = BH2 + CH2
Suy ra
Vậy AD = BH = 12 cm.
b) Ta có đường tròn đường kính BC có tâm I và bán kính
Khoảng cách từ tâm I đến AD là d = IK.
Do tứ giác ABMK là hình chữ nhật nên KM = AB = 4 cm.
Xét ∆BCH có I là trung điểm của BC và IM // CH nên IM là đường trung bình của tam giác, do đó
Ta có: IK = KM + IM = 4 + 2,5 = 6,5 cm.
Do đó d = IM = R = 6,5 cm.
Vậy đường thẳng AD tiếp xúc với đường tròn đường kính BC.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
103643 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68927 -
Đã trả lời bởi chuyên gia
56777 -
Đã trả lời bởi chuyên gia
47628 -
Đã trả lời bởi chuyên gia
44434 -
Đã trả lời bởi chuyên gia
36922 -
Đã trả lời bởi chuyên gia
35490
