Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được

Lời giải Bài 1 trang 65 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

351


Giải SBT Toán 10 Chân trời sáng tạo Bài 2: Đường thẳng trong mặt phẳng tọa độ

Bài 1 trang 65 SBT Toán 10 tập 2: Tìm các giá trị của tham số a, b, c để phương trình ax + by + c = 0 có thể biểu diễn được các đường thẳng trong hình đưới đây.

Sách bài tập Toán 10 Bài 2: Đường thẳng trong mặt phẳng tọa độ - Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(32;0)  ; B(0; 3)

Ta có hệ  {32a'

Suy ra đường thẳng có dạng y = 2x + 3 left right double arrow  2x – y + 3 = 0

Vì vậy a = 2; b = – 1; c = 3.

b) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(1; 0) ; B(0; 1)

Ta có hệ  open curly brackets table attributes columnalign left end attributes row cell a apostrophe plus b apostrophe equals 0 end cell row cell 0. a apostrophe plus b apostrophe equals 1 end cell end table close left right double arrow open curly brackets table attributes columnalign left end attributes row cell a apostrophe equals negative 1 end cell row cell b apostrophe equals 1 end cell end table close

Suy ra đường thẳng có dạng y = – x + 1 left right double arrow  x + y – 1 = 0

Vì vậy a = 1; b = 1; c = – 1.

c) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(0; 3) và song song với trục hoành nên đường thẳng có dạng y c 3 = 0

Vì vậy a = 0; b = 1; c = – 3.

d) Giả sử đường thẳng cần tìm có dạng y = a’x + b’

Đường thẳng đi qua điểm A(– 2; 0) và song song với trục Oy nên đường thẳng có dạng x + 2 = 0.

Vì vậy a = 1; b = 0; c = 2.

351