Chứng minh rằng: a) sin^4α + cos^4α = 1 - 2sin^2α . cos^2α
Lời giải Bài 3.5 trang 33 SBT Toán 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.
Bài 3.5 trang 33 SBT Toán 10 Tập 1: Chứng minh rằng: a) sin4α + cos4α = 1 - 2sin2α . cos2α;
b) sin6α + cos6α = 1 - 3sin2α . cos2α;
c*) .
Lời giải:
a) Ta có (sin2α + cos2α)2 = sin4α + 2sin2α . cos2α + cos4α
12 = sin4α + cos4α + 2sin2α . cos2α
sin4α + cos4α = 1 - 2sin2α . cos2α
Vậy sin4α + cos4α = 1 - 2sin2α . cos2α.
b) Ta có (sin2α + cos2α)3 = sin6α + cos6α + 3sin2α . cos2α(sin2α + cos2α)
13 = sin6α + cos6α + 3sin2α . cos2α . 1
sin6α + cos6α = 1 - 3sin2α . cos2α
Vậy sin6α + cos6α = 1 - 3sin2α . cos2α.
c) Xét sin4α + 6cos2α + 3
= sin4α + 6(1 - sin2α) + 3
= sin4α - 6sin2α + 9
= (sin2α - 3)2
= |sin2α – 3| = 3 - sin2α
(do 0 ≤ sin2α < 1 nên sin2α – 3 < 0).
Xét cos4α + 4sin2α
= cos4α + 4(1 - cos2α)
= cos4α - 4 cos2α + 4
= (cos2α - 2)2
= |cos2α – 2| = 2 - cos2α
(do 0 ≤ cos2α < 1 nên cos2α – 2 < 0).
= 3 - sin2 α + 2 - cos2 α
= 5 - (sin2 α + cos2 α)
= 5 - 1
= 4.
Vậy .
Xem thêm các bài giải sách bài tập Toán 10 bộ sách Kết nối tri thức hay, chi tiết khác:
Bài 3.1 trang 32 SBT Toán 10 Tập 1: Tính giá trị của biểu thức: a) A = sin45° + 2sin60° + tan120° + cos135°...
Bài 3.3 trang 33 SBT Toán 10 Tập 1: Cho góc α thỏa mãn 0° < α < 180°, tanα = 2. Tính giá trị của các biểu thức sau: a) G = 2sin α + cos α...
Bài 3.5 trang 33 SBT Toán 10 Tập 1: Chứng minh rằng: a) sin4α + cos4α = 1 - 2sin2α . cos2α; b) sin6α + cos6α = 1 - 3sin2α . cos2α...