Chứng minh rằng: a) sin^4α + cos^4α = 1 - 2sin^2α . cos^2α

Lời giải Bài 3.5 trang 33 SBT Toán 10 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

232


Giải SBT Toán 10 Kết nối tri thức Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°

Bài 3.5 trang 33 SBT Toán 10 Tập 1: Chứng minh rằng: a) sin4α + cos4α = 1 - 2sin2α . cos2α;

b) sin6α + cos6α = 1 - 3sin2α . cos2α;

c*) sin4α+6cos2α+3+cos4α+4sin2α=4.

Lời giải:

a) Ta có (sin2α + cos2α)2 = sin4α + 2sin2α . cos2α + cos4α

 12 = sin4α + cos4α + 2sin2α . cos2α

 sin4α + cos4α = 1 - 2sin2α . cos2α

Vậy sin4α + cos4α = 1 - 2sin2α . cos2α.

b) Ta có (sin2α + cos2α)3 = sin6α + cos6α + 3sin2α . cos2α(sin2α + cos2α)

 13 = sin6α + cos6α + 3sin2α . cos2α . 1

 sin6α + cos6α = 1 - 3sin2α . cos2α

Vậy sin6α + cos6α = 1 - 3sin2α . cos2α.

c) Xét sin4α + 6cos2α + 3

= sin4α + 6(1 - sin2α) + 3

= sin4α - 6sin2α + 9

= (sin2α - 3)2

 sin4α+6cos2α+3=sin2α32

= |sin2α – 3| = 3 - sin2α

(do 0 ≤ sin2α < 1 nên sin2α – 3 < 0).

Xét cos4α + 4sin2α

= cos4α + 4(1 - cos2α)

= cos4α - 4 cos2α + 4

= (cos2α - 2)2

 cos4α+4sin2α=cos2α22

 = |cos2α – 2| = 2 - cos2α

(do 0 ≤ cos2α < 1 nên cos2α – 2 < 0).

 sin4α+6cos2α+3+cos4α+4sin2α 

= 3 - sin2 α + 2 - cos2 α

= 5 - (sin2 α + cos2 α)

= 5 - 1

= 4.

Vậy sin4α+6cos2α+3+cos4α+4sin2α=4.

Bài viết liên quan

232