Giải Sách bài tập Toán 10 Kết nối tri thức Bài 3: Bất phương trình bậc nhất hai ẩn
Với giải sách bài tập Toán 10 Bài 3: Bất phương trình bậc nhất hai ẩn sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 Bài 3.
Giải sách bài tập Toán lớp 10 Bài 3: Bất phương trình bậc nhất hai ẩn - Kết nối tri thức
Giải SBT Toán 10 trang 18 Tập 1
Bài 2.1 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình bậc nhất hai ẩn -3x + y < 4.
a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình -3x + y < 4 trên mặt phẳng tọa độ.
Bước 1. Vẽ đường thẳng d: -3x + y = 4 trên mặt phẳng tọa độ Oxy như sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 4.
Ta có bảng sau:
x |
0 |
1 |
y |
4 |
7 |
Do đó đồ thị của đường thẳng d: -3x + y = 4 đi qua các điểm có tọa độ (0; 4) và (1; 7).
• Xác định 2 điểm đó trên hệ trục tọa độ Oxy và kẻ đường thẳng đi qua 2 điểm đó, ta thu được đường thẳng d: -3x + y = 4.
Bước 2. Ta chọn O(0; 0) là điểm không thuộc đường thẳng d: -3x + y = 4 và thay vào biểu thức -3x + y, ta có -3 . 0 + 0 = 0 < 4.
Do đó miền nghiệm của bất phương trình -3x + y < 4 là nửa mặt phẳng bờ d chứa gốc tọa độ và bỏ đi đường thẳng d (miền không được gạch).
b) Khi đó miền nghiệm của bất phương trình -3x + y ≤ 4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).
Miền nghiệm của bất phương trình -3x + y ≥ 4 là nửa mặt phẳng bờ d không chứa gốc tọa độ (miền được gạch).
Bài 2.2 trang 18 SBT Toán 10 Tập 1: Cho bất phương trình 2x + 3y + 3 ≤ 5x + 2y + 3.
Lời giải:
Ta có 2x + 3y + 3 ≤ 5x + 2y + 3
2x + 3y + 3 - 5x - 2y - 3 ≤ 0.
-3x + y ≤ 0.
Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1. Vẽ đường thẳng d: -3x + y = 0 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
x |
0 |
1 |
y |
0 |
3 |
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2. Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).
Lời giải:
Ta thấy đường thẳng d đi qua hai điểm (0; -2) và (4; 0).
Gọi phương trình đường thẳng d: y = ax + b (a ≠ 0).
Thay x = 0; y = -2 vào đường thẳng d ta có:
-2 = a . 0 + b
b = -2.
Thay x = 4; y = 0 vào đường thẳng d ta có:
0 = 4 . a + (-2)
2 = 4 . a
a =
Do đó phương trình đường thẳng d: y = x - 2
2y = x - 4
x - 2y = 4.
Chọn điểm O(0; 0) là điểm không thuộc đường thẳng d và thay vào biểu thức x - 2y ta được: 0 - 2 . 0 = 0 < 4.
Do đó bất phương trình nhận nửa mặt phẳng bờ là đường thẳng d (miền không bị gạch) làm miền nghiệm là x - 2y ≤ 4.
Giải SBT Toán 10 trang 19 Tập 1
Bài 2.4 trang 19 SBT Toán 10 Tập 1: Cho bất phương trình x + 2y ≥ -4.
a) Biểu diễn miền nghiệm của bất phương trình đã cho trên mặt phẳng tọa độ.
b) Miền nghiệm có chứa bao nhiêu điểm (x; y) với x, y là các số nguyên âm?
Lời giải:
a) Biểu diễn miền nghiệm của bất phương trình x + 2y ≥ -4 trên mặt phẳng tọa độ:
Bước 1. Ta vẽ đường thẳng d: x + 2y = -4 theo các bước sau:
• Xác định hai điểm thuộc đường thẳng d.
Ta có bảng sau:
x |
0 |
-4 |
y |
-2 |
0 |
Do đó đường thẳng d: x + 2y = -4 đi qua hai điểm (0; -2) và (-4; 0).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: x + 2y = -4.
Bước 2. Chọn điểm O(0; 0) không thuộc đường thẳng d và thay vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 > -4.
Do đó miền nghiệm của bất phương trình x + 2y ≥ -4 là nửa mặt phẳng bờ d chứa gốc tọa độ (miền không được gạch).
b) Do x, y là các số nguyên âm và x + 2y ≥ -4 nên 0 > x > -4.
Với y ≤ -2 thì 2y ≤ -4, mà x là số nguyên âm nên x + 2y < -4 (loại).
Do đó 0 > y > -2 suy ra y = -1.
Ta có bảng sau:
x |
-1 |
-2 |
-3 |
y |
-1 |
-1 |
-1 |
x + 2y |
-3 > -4 (thỏa mãn) |
-4 = -4 (thỏa mãn) |
-5 < -4 (loại) |
Vậy miền nghiệm chứa hai điểm (x; y) {(-1; -1); (-2; -1)} với x, y là các số nguyên âm.
a) Viết bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài.
b) Biểu diễn miền nghiệm của bất phương trình tìm được ở câu a trên mặt phẳng tọa độ.
Lời giải:
a) Giá tiền của x kg cà phê loại thứ nhất là 140x (nghìn đồng).
Giá tiền của y kg cà phê loại thứ hai là 180y (nghìn đồng).
Tổng số tiền khi trộn x kg loại thứ nhất và y kg loại thứ hai là: 140x + 180y (nghìn đồng).
Tổng số kg cà phê sau khi trộn x kg loại thứ nhất và y kg loại thứ hai là: x + y (kg).
Giá của cà phê sau khi trộn có giá cao nhất là 170 nghìn đồng/kg nên số tiền cao nhất thu được khi bán x + y kg cà phê là 170(x + y) (nghìn đồng).
Khi đó ta có bất phương trình 140x + 180y ≤ 170(x + y).
140x - 170x + 180y - 170y ≤ 0
-30x + 10y ≤ 0
-3x + y ≤ 0
Vậy bất phương trình bậc nhất hai ẩn x, y thỏa mãn điều kiện đề bài là -3x + y ≤ 0.
b) Biểu diễn miền nghiệm của bất phương trình -3x + y ≤ 0 trên mặt phẳng tọa độ:
Bước 1: Ta vẽ đường thẳng d: -3x + y = 0 như sau:
• Xác định hai điểm thuộc đường thẳng d: -3x + y = 0.
x |
0 |
1 |
y |
0 |
3 |
Do đó đường thẳng d: -3x + y = 0 đi qua hai điểm có tọa độ (0; 0) và (1; 3).
• Xác định hai điểm đó trên hệ trục tọa độ Oxy, kẻ đường thẳng đi qua 2 điểm đó ta thu được đường thẳng d: -3x + y = 0.
Bước 2: Ta chọn điểm (0; 1) là điểm không thuộc đường thẳng d: -3x + y = 0 và thay vào biểu thức -3x + y ta có -3 . 0 + 1 = 1 > 0.
Do đó miền nghiệm của bất phương trình -3x + y ≤ 0 là nửa mặt phẳng bờ d không chứa điểm (0; 1) (miền không được gạch).