Xếp ngẫu nhiên 6 bạn An, Bình, Cường, Dũng, Đông, Huy vào một dãy hàng dọc

Lời giải Bài 34 trang 48 SBT Toán 10 sách Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

244


Giải SBT Toán 10 Cánh diều Bài 5: Xác suất của biến cố

Bài 34 trang 48 SBT Toán 10 Tập 2:

Xếp ngẫu nhiên 6 bạn An, Bình, Cường, Dũng, Đông, Huy vào một dãy hàng dọc. Tính xác suất của các biến cố sau:

a) A: “Bạn Dũng luôn đứng liền sau bạn Bình”.

b) B: “Bạn Bình và bạn Cường luôn đứng liền nhau”.

Lời giải:

Xếp ngẫu nhiên 6 bạn thành một hàng dọc là một hoán vị của 6 phần tử.

Do đó số phần tử của không gian mẫu là: n(Ω) = 6! = 720.

a) Vì bạn Dũng đứng liền sau bạn Bình nên ta có thể coi 2 bạn đó là 1 bạn.

Như vậy, chỉ còn xếp chỗ cho 4 bạn còn lại và 1 bạn “Bình – Dũng”.

Tức là chỉ cần xếp chỗ cho 5 bạn.

Xếp ngẫu nhiên 5 bạn thành một hàng dọc là một hoán vị của 5 phần tử.

Khi đó số phần tử của biến cố A là: n(A) = 5! = 120.

Vậy xác suất của biến cố A là: PA=nAnΩ=120720=16 .

b) Vì bạn Bình và bạn Cường luôn đứng liền nhau nên ta có thể coi 2 bạn đó là 1 bạn.

Như vậy, chỉ còn xếp chỗ cho 4 bạn còn lại và 1 bạn “Bình – Cường”.

Tuy nhiên, có hai trường hợp là bạn Bình đứng trước hoặc bạn Cường đứng trước.

Do đó có 2 cách xếp vị trí đứng của bạn Bình và bạn Cường.

Xếp vị trí 5 bạn thành một hàng dọc là một hoán vị của 5 phần tử.

Khi đó số phần tử của biến cố B là: n(B) = 2.5! = 240.

Vậy xác suất của biến cố B là: PB=nBnΩ=240720=13 .

Bài viết liên quan

244