Quảng cáo
1 câu trả lời 9630
\[\begin{array}{l}
A = \frac{{2{x^2} + 2x}}{{1 - {x^2}}}\\
B = \frac{{1 - 2x}}{{{x^2} - 3x + 2}} + \frac{{x + 1}}{{x - 2}}\\
a)A = \frac{{2{x^2} + 2x}}{{1 - {x^2}}}(x \ne \pm 1)\\
= \frac{{2x(x + 1)}}{{(1 - x)(x + 1)}}\\
= \frac{{2x}}{{1 - x}}\\
B = \frac{{1 - 2x}}{{{x^2} - 3x + 2}} + \frac{{x + 1}}{{x - 2}}(x \ne 1;x \ne 2)\\
= \frac{{1 - 2x}}{{(x - 1)(x - 2)}} + \frac{{(x + 1)(x - 1)}}{{(x - 1)(x - 2)}}\\
= \frac{{1 - 2x + {x^2} - 1}}{{(x - 1)(x - 2)}}\\
= \frac{{x(x - 2)}}{{(x - 1)(x - 2)}}\\
= \frac{x}{{x - 1}}\\
b)|x - 2| = 3\\
= > \left[ \begin{array}{l}
x - 2 = 3\\
x - 2 = - 3
\end{array} \right.\\
= > \left[ \begin{array}{l}
x = 5\\
x = - 1
\end{array} \right.\\
A = \frac{{2x}}{{1 - x}}(x \ne \pm 1)\\
= > x = 5(tm)\\
= > A = \frac{{2.5}}{{1 - 5}} = \frac{{10}}{{ - 4}} = \frac{{ - 5}}{2}\\
c)C = A - B = \frac{{2x}}{{1 - x}} - \frac{x}{{x - 1}} = \frac{{2x + x}}{{1 - x}} = \frac{{3x}}{{1 - x}}(x \ne \pm 1;x \ne 2)\\
d)\\
C = \frac{{3x}}{{1 - x}}(x \ne \pm 1;x \ne 2)\\
= \frac{{ - 3 + 3x + 3}}{{1 - x}}\\
= - 3 + \frac{3}{{1 - x}}\\
C \in Z \Leftrightarrow \frac{3}{{1 - x}} \in Z\\
= > 1 - x \in U(3) = \{ - 3; - 1;1;3\} \\
= > x \in \{ 4;2;0; - 2\}
\end{array}\]
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107151
-
Hỏi từ APP VIETJACK67580
-
44957
-
38162
