a) 5y - 4x - 8 - (y + 2x - 3).
b) (2x - y)(4x - 3y) - 20z3y2 : (-2x2y).
a) x2 - 10x + 25 - y2;
b) x3 + y3 - 3x - 3y;
c) x3 + 2x2y + xy2 - 4x.
Quảng cáo
2 câu trả lời 260
Let's simplify or solve each expression you provided step by step.
### a) \(5y - 4x - 8 - (y + 2x - 3)\)
1. Distribute the negative sign:
\[
5y - 4x - 8 - y - 2x + 3
\]
2. Combine like terms:
- \(5y - y = 4y\)
- \(-4x - 2x = -6x\)
- \(-8 + 3 = -5\)
So, the simplified expression is:
\[
4y - 6x - 5
\]
### b) \((2x - y)(4x - 3y) - 20z^3y^2 : (-2x^2y)\)
1. First, multiply \( (2x - y)(4x - 3y) \):
\[
2x \cdot 4x + 2x \cdot (-3y) - y \cdot 4x - y \cdot (-3y) = 8x^2 - 6xy - 4xy + 3y^2
\]
Combine like terms:
\[
8x^2 - 10xy + 3y^2
\]
2. So, now we have:
\[
8x^2 - 10xy + 3y^2 - 20z^3y^2
\]
Combine \(3y^2 - 20z^3y^2\):
\[
8x^2 - 10xy + (3 - 20z^3)y^2
\]
3. Now, let's divide by \(-2x^2y\):
\[
\frac{8x^2 - 10xy + (3 - 20z^3)y^2}{-2x^2y}
\]
Break it into three separate fractions:
\[
\frac{8x^2}{-2x^2y} + \frac{-10xy}{-2x^2y} + \frac{(3 - 20z^3)y^2}{-2x^2y}
\]
Simplifying each term yields:
\[
-4/y + \frac{5}{x} + \frac{-(3 - 20z^3)y}{2x^2}
\]
Which can further be combined into:
\[
-\frac{4}{y} + \frac{5}{x} - \frac{(3 - 20z^3)}{2x^2}y
\]
### a) \(x^2 - 10x + 25 - y^2\)
1. We recognize that \(x^2 - 10x + 25\) can be rewritten as \((x - 5)^2\):
\[
(x - 5)^2 - y^2
\]
2. This expression is a difference of squares:
\[
(x - 5 - y)(x - 5 + y)
\]
### b) \(x^3 + y^3 - 3x - 3y\)
1. We can apply the sum of cubes factorization here:
\[
(x+y)(x^2 - xy + y^2) - 3(x + y)
\]
Factor out \((x+y)\):
\[
(x+y)(x^2 - xy + y^2 - 3)
\]
### c) \(x^3 + 2x^2y + xy^2 - 4x\)
1. We can factor out \(x\):
\[
x(x^2 + 2xy + y^2 - 4)
\]
2. The quadratic inside can be tricky. It doesn't factor nicely, but we have:
\[
x(x^2 + 2xy + y^2 - 4)
\]
Thus, we've simplified each expression as much as possible. If you need more details on any specific part or additional assistance, feel free to ask!
Let's simplify or solve each expression you provided step by step.
### a) 5y−4x−8−(y+2x−3)5y−4x−8−(y+2x−3)
1. Distribute the negative sign:
5y−4x−8−y−2x+35y−4x−8−y−2x+3
2. Combine like terms:
- 5y−y=4y5y−y=4y
- −4x−2x=−6x−4x−2x=−6x
- −8+3=−5−8+3=−5
So, the simplified expression is:
4y−6x−54y−6x−5
### b) (2x−y)(4x−3y)−20z3y2:(−2x2y)(2x−y)(4x−3y)−20z3y2:(−2x2y)
1. First, multiply (2x−y)(4x−3y)(2x−y)(4x−3y):
2x⋅4x+2x⋅(−3y)−y⋅4x−y⋅(−3y)=8x2−6xy−4xy+3y22x⋅4x+2x⋅(−3y)−y⋅4x−y⋅(−3y)=8x2−6xy−4xy+3y2
Combine like terms:
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107278
-
Hỏi từ APP VIETJACK67830
-
44998
-
38171
