Quảng cáo
1 câu trả lời 256
\[
xy(x + y) - yz(y + z) + xz(x + z) + xyz,
\]
\[
xy(x + y) = x^2y + xy^2.
\]
\[
-yz(y + z) = -y^2z - yz^2.
\]
\[
xz(x + z) = x^2z + xz^2.
\]
ta có:
\[
x^2y + xy^2 - y^2z - yz^2 + x^2z + xz^2 + xyz.
\]
\[
(x^2y + x^2z) + (xy^2 + xyz + xz^2) - (y^2z + yz^2).
\]
1. Nhóm đầu tiên: \(x^2y + x^2z = x^2(y + z)\).
2. Nhóm thứ hai: \(xy^2 + xyz + xz^2\) có thể viết lại thành \(xy^2 + xyz + xz^2 = xy(y + z) + xz^2\).
3. Nhóm thứ ba: \(- (y^2z + yz^2) = -yz(y + z)\).
Cuối cùng, ta có thể viết lại biểu thức là:
\[
x^2(y + z) + xy(y + z) + xz^2 - yz(y + z).
\]
\[
(x^2 + xy - yz)(y + z) + xz^2.
\]
Vậy, biểu thức đã được đơn giản hóa là:
\[
(x^2 + xy - yz)(y + z) + xz^2.
\]
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107437
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68061 -
Đã trả lời bởi chuyên gia
52846 -
Đã trả lời bởi chuyên gia
47344 -
Đã trả lời bởi chuyên gia
45400 -
Đã trả lời bởi chuyên gia
45045 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38412 -
Đã trả lời bởi chuyên gia
38191
