Phòng công nghệ của một công ty có 4 kĩ sư và 6 kĩ thuật viên. Chọn ra ngẫu nhiên đồng thời 3 người từ phòng. Tính xác suất để cả 3 người được chọn đều là kĩ sư biết rằng trong 3 người được chọn có ít nhất 2 kĩ sư.
Quảng cáo
1 câu trả lời 196
Gọi A là biến cố “Cả 3 người được chọn đều là kĩ sư” và B là biến cố “3 người được chọn có ít nhất 2 kĩ sư”.
Cần tính P(A|B) \( = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).
Số cách chọn 3 người từ phòng 10 người là \(C_{10}^3 = 120\) cách.
Số cách chọn 3 người trong có có ít nhất hai kĩ sư là \(C_4^2.C_6^1 + C_4^3 = 40\) cách.
Suy ra \(P\left( B \right) = \frac{{40}}{{120}} = \frac{1}{3}\).
Số cách chọn 3 người đều là kĩ sư là \(C_4^3 = 4\) cách.
Do đó \(P\left( {AB} \right) = \frac{4}{{120}} = \frac{1}{{30}}\).
Vậy \(P\left( {A|B} \right) = \frac{1}{{30}}:\frac{1}{3} = \frac{1}{{10}}\).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129704 -
Đã trả lời bởi chuyên gia
104155 -
Đã trả lời bởi chuyên gia
94109 -
Đã trả lời bởi chuyên gia
69540

