Tính diện tích của hình phẳng giới hạn bởi các đường:
a) y = ex, y = x2 – 1, x = −1, x = 1;
b) y = sinx, y = x, \(x = \frac{\pi }{2},x = \pi \);
c) y = 9 – x2, y = 2x2, \(x = - \sqrt 3 ,x = \sqrt 3 \);
d) \(y = \sqrt x ,\)y = x2, x = 0, x = 1.
Quảng cáo
1 câu trả lời 78
a)

Diện tích cần tính là:
\(S = \int\limits_{ - 1}^1 {\left| {{e^x} - {x^2} + 1} \right|dx} \)\( = \int\limits_{ - 1}^1 {\left( {{e^x} - {x^2} + 1} \right)dx} \)\( = \left. {\left( {{e^x} - \frac{{{x^3}}}{3} + x} \right)} \right|_{ - 1}^1\)\( = e + \frac{2}{3} - {e^{ - 1}} + \frac{2}{3}\)\( = \frac{{{e^2} - 1}}{e} + \frac{4}{3}\).
b) Diện tích cần tính là:
\(S = \int\limits_{\frac{\pi }{2}}^\pi {\left| {\sin x - x} \right|} dx\)\( = \int\limits_{\frac{\pi }{2}}^\pi {\left( {x - \sin x} \right)} dx\)\( = \left. {\left( {\frac{{{x^2}}}{2} + \cos x} \right)} \right|_{\frac{\pi }{2}}^\pi \)\( = \frac{{{\pi ^2}}}{2} - 1 - \frac{{{\pi ^2}}}{8} = \frac{{3{\pi ^2}}}{8} - 1\).
c)

Diện tích cần tính là:
\(S = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left| {9 - {x^2} - 2{x^2}} \right|} dx\)\( = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left| {9 - 3{x^2}} \right|} dx\)\( = \int\limits_{ - \sqrt 3 }^{\sqrt 3 } {\left( {9 - 3{x^2}} \right)} dx\)
\( = \left. {\left( {9x - {x^3}} \right)} \right|_{ - \sqrt 3 }^{\sqrt 3 }\)\( = 9\sqrt 3 - 3\sqrt 3 + 9\sqrt 3 - 3\sqrt 3 \)\( = 12\sqrt 3 \).
d)

Diện tích cần tính là:
\(S = \int\limits_0^1 {\left| {\sqrt x - {x^2}} \right|dx} \)\( = \int\limits_0^1 {\left( {\sqrt x - {x^2}} \right)dx} \)\( = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - \frac{{{x^3}}}{3}} \right)} \right|_0^1\)\( = \frac{1}{3}\).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129704 -
Đã trả lời bởi chuyên gia
104155 -
Đã trả lời bởi chuyên gia
94109 -
Đã trả lời bởi chuyên gia
69540

