Quảng cáo
2 câu trả lời 681
To solve the equation \( \cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right) \), we can proceed as follows:
1. **Using the double-angle identity for cosine:**
\[ \cos^2 2x = \frac{1 + \cos 4x}{2} \]
2. **Expanding \( \cos^2 \left(x + \frac{\pi}{6}\right) \):**
\[ \cos^2 \left(x + \frac{\pi}{6}\right) = \frac{1 + \cos \left(2x + \frac{\pi}{3}\right)}{2} \]
3. **Setting the equations equal to each other:**
\[ \frac{1 + \cos 4x}{2} = \frac{1 + \cos \left(2x + \frac{\pi}{3}\right)}{2} \]
4. **Eliminate the denominators:**
\[ 1 + \cos 4x = 1 + \cos \left(2x + \frac{\pi}{3}\right) \]
5. **Simplify the equation:**
\[ \cos 4x = \cos \left(2x + \frac{\pi}{3}\right) \]
6. **Apply the cosine identity:**
\[ 4x = 2x + \frac{\pi}{3} + 2k\pi \quad \text{or} \quad 4x = - (2x + \frac{\pi}{3}) + 2k\pi \]
Where \( k \) is any integer.
7. **Solve for \( x \):**
- From \( 4x = 2x + \frac{\pi}{3} + 2k\pi \):
\[ 2x = \frac{\pi}{3} + 2k\pi \]
\[ x = \frac{\pi}{6} + k\pi \]
- From \( 4x = - (2x + \frac{\pi}{3}) + 2k\pi \):
\[ 4x = -2x - \frac{\pi}{3} + 2k\pi \]
\[ 6x = -\frac{\pi}{3} + 2k\pi \]
\[ x = -\frac{\pi}{18} + \frac{k\pi}{3} \]
Therefore, the solutions for \( x \) are:
\[ x = \frac{\pi}{6} + k\pi \quad \text{or} \quad x = -\frac{\pi}{18} + \frac{k\pi}{3} \]
where \( k \) is any integer. These represent the general solutions to the equation \( \cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right) \).
TRẢ LỜI:
Giải bởi Vietjack
cos22x=cos2(x+π6)cos22𝑥=cos2(𝑥+𝜋6)
⇔1+cos4x2=1+cos(2x+π3)2⇔1+cos4𝑥2=1+cos(2𝑥+𝜋3)2
⇔cos4x=cos(2x+π3)⇔cos4𝑥=cos(2𝑥+𝜋3)
⇔[4x=2x+π3+k2π4x=−2x−π3+k2π⇔[2x=π3+k2π6x=−π3+k2π⇔[4𝑥=2𝑥+𝜋3+𝑘2𝜋4𝑥=−2𝑥−𝜋3+𝑘2𝜋⇔[2𝑥=𝜋3+𝑘2𝜋6𝑥=−𝜋3+𝑘2𝜋
⇔[x=π6+kπx=−π18+kπ3(k∈Z)⇔[𝑥=𝜋6+𝑘𝜋𝑥=−𝜋18+𝑘𝜋3(𝑘∈𝑍)
Vậy phương trình đã cho có các nghiệm là x=π6+kπ𝑥=𝜋6+𝑘𝜋 và x=−π18+kπ3𝑥=−𝜋18+𝑘𝜋3 với k ∈ ℤ.
Quảng cáo
Bạn muốn hỏi bài tập?
