Cho a, b, c là các số thực dương thỏa mãn a2 + b2 + c2 = (a − b)2 + (b − c)2 + (c − a)2 và ab + bc + ca = 9. Tính a + b + c.
Quảng cáo
1 câu trả lời 75
a2 + b2 + c2 = (a − b)2 + (b − c)2 + (c − a)2
Û a2 + b2 + c2 = a2 − 2ab + b2 + b2 − 2bc + c2 + c2 − 2ca + a2
Û a2 + b2 + c2 = 2(ab + bc + ca)
Û a2 + b2 + c2 = 18
Û a2 + b2 + c2 + 2ab + 2bc + 2ca = 18 + 18
Û (a + b + c)2 = 36
Mà a, b, c là các số thực dương Þ a + b + c > 0.
Vậy a + b + c = 6.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129704 -
Đã trả lời bởi chuyên gia
104155 -
Đã trả lời bởi chuyên gia
94109 -
Đã trả lời bởi chuyên gia
69540
Gửi báo cáo thành công!

