Quảng cáo
2 câu trả lời 172
Để rút gọn biểu thức này, ta có thể nhân chung một số lớn nhất mà có thể chia hết cho tất cả các hạng tử. Trong trường hợp này, số chung nhỏ nhất chia hết cho cả 5, 20 và y là 5.
5x^2y - 20xy^2 + 20y^2 = 5(x^2y - 4xy^2 + 4y^2).
Kết quả cuối cùng được rút gọn là 5(x-y)^2.
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
Quảng cáo
Câu hỏi hot cùng chủ đề
-
93338
-
Hỏi từ APP VIETJACK46983
-
Cho tam giác MNP vuông tại M,đường cao MH
a, Chứng minh tam giác HMN đồng dạng với tam giác MNP
b, chứng minh hệ thức
=NH.PH
c, Lấy điểm E tùy ý trên cạnh MP,vẽ điểm F trên cạnh MN sao cho góc FHE =90 độ. Chứng minh tam giác NFH đồng dạng với tam giác MEH và góc NMH=góc FEH
d,Xác định vị trí điểm E trên MP sao cho diện tích tam giác HEF đạt giá trị nhỏ nhất
40911