Quảng cáo
2 câu trả lời 305
Để rút gọn biểu thức này, ta có thể nhân chung một số lớn nhất mà có thể chia hết cho tất cả các hạng tử. Trong trường hợp này, số chung nhỏ nhất chia hết cho cả 5, 20 và y là 5.
5x^2y - 20xy^2 + 20y^2 = 5(x^2y - 4xy^2 + 4y^2).
Kết quả cuối cùng được rút gọn là 5(x-y)^2.
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
b) 2201622016 x 2x−12�−1 = 2201522015
⇔ 22016+x−122016+�−1 = 2201522015
⇔ 2016 + x - 1 = 2015
⇔ x + 2015 = 2015
⇔ x = 2015 - 2015
Vậy x = 0
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107278
-
Hỏi từ APP VIETJACK67830
-
44998
-
38171
