Thai Trinh
Hỏi từ APP VIETJACK
2cos2x*cosx=1+cos2x +cos3x
Quảng cáo
2 câu trả lời 662
3 năm trước
Áp dụng công thức: $cos2x=cos^2x-sin^2x=2cos^2x-1$ và $cos3x=4cos^3x-3cosx$
PT: $2cos2xcosx=1+cos2x+cos3x$
⇔$2(2cos^2x-1)cosx=1+2cos^2x-1+4cos^3x-3cosx$
⇔$4cos^3x-2cosx-1-2cos^2x+1-4cos^3x+3cosx=0$
⇔$-2cos^2x+cosx=0$
⇔$cosx(-2cosx+1)=0$
⇔\(\left[ \begin{array}{l}cosx=0\\cosx=\frac{1}{2}\end{array} \right.\) \(\left[ \begin{array}{l}x=\frac{\pi}{2}+k\pi\\x=±\frac{\pi}{3}+k2\pi\end{array} \right.\) $(k∈Z)$
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
Gửi báo cáo thành công!
