Với giá trị nào của tham số m thì: a) Phương trình có nghiệm

Lời giải Bài 7 trang 14 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

199


Giải SBT Toán 10 Chân trời sáng tạo Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 7 trang 14 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì:

a) Phương trình 4x2+2m2x+m2=0 có nghiệm;

b) Phương trình m+1x2+2mx4=0 có hai nghiệm phân biệt;

c) Phương trình mx2+m+1x+3m+10=0 vô nghiệm,

d) Phương trình 2x2+m+2x+2m40 có tập nghiệm là R;

e) Phương trình 3x2+2mx+m20 có tập nghiệm là .

Lời giải:

a) Phương trình 4x2+2m2x+m2=0 có nghiệm khi và chỉ khi:

∆ = [2.( m – 2 )]2 – 4.4.m2 ≥ 0

⇔ m2 – 4m + 4 – 4m2 ≥ 0

⇔ – 3m2 – 4m + 4 ≥ 0

Tam thức bậc hai f (m) = – 3m2 – 4m + 4 có ∆m = (–4)2 – 4.( –3).4 = 64 > 0 suy ra f(m) có hai nghiệm phân biệt m1 = 23 và m2 = –2,  a = – 3 < 0 nên f (m) ≥ 0 khi và chỉ khi – 2 ≤ m ≤ 23.

Vậy – 2 ≤ m ≤ 23 thỏa mãn yêu cầu đề bài.

b) Phương trình m+1x2+2mx4=0 có hai nghiệm phân biệt khi và chỉ khi

m + 1 ≠ 0 và ∆ = (2m)2 – 4.( m+1 ).(–4) > 0

+) Ta có: m + 1 ≠ 0 khi và chỉ khi m ≠ –1.

+) Xét ∆ = (2m)2 – 4.(m+1).(–4) > 0

⟺ 4m2 + 16m + 16 > 0

⟺  m2 + 4m + 4 > 0

⟺ ( m + 2 )2 > 0

⟺ m ≠ –2 (vì ( m + 2 )2 ≥ 0 với mọi x ∈ ℝ)

Vậy m ≠ –1 và m ≠ –2 thỏa mãn yêu cầu bài toán.

c) +) Nếu m = 0 thì phương trình trở thành x + 10 = 0, có nghiệm x = –10. Do đó m = 0 không thỏa mãn yêu cầu.

+) Nếu m ≠ 0 thì phương trình vô nghiệm khi và chỉ khi:

∆ = (m + 1)2 – 4.m.( 3m + 10 ) < 0

⟺ m2 + 2m + 1 – 12m2 – 40m < 0

⟺ –11m2 – 38m +1 < 0

Tam thức bậc hai f (m) = –11m2 – 38m +1 có ∆m = (–38)2 – 4.( –11).1 = 1488  suy ra f(m) có hai nghiệm phân biệt:

m1 = 19+29311 và  m2 = 1929311,  a = – 11 < 0 nên f ( m ) < 0 khi và chỉ khi

m < 19-29311 hoặc m > 19+29311

Vậy m < 1929311 và m > 19+29311 thoả mãn yêu cầu đề bài.

d) Bất phương trình 2x2+m+2x+2m40 có a = 2 > 0 nên tập nghiệm là  khi và chỉ khi ∆ = ( m + 2 )2 – 4.2.( 2m – 4 ) ≤ 0

⟺ m2 + 4m + 4 – 16m+ 32 < 0

⟺ m2 – 12m + 36 ≤ 0

⟺ ( m – 6 )2  ≤ 0

⟺ m = 6 (vì ( m – 6 )2  ≥ 0 với mọi m ∈ ℝ)

Vậy m = 6 thỏa mãn yêu cầu đề bài.

e) Bất phương trình 3x2+2mx+m20 có tập nghiệm là  khi và chỉ khi a > 0 và ∆ ≤ 0 mà a = –3 < 0 nên không tồn tại m thỏa mãn yêu cầu.

Vậy không tồn tại m thỏa mãn yêu cầu.

Bài viết liên quan

199