Giải các bất phương trình bậc hai sau

Lời giải Bài 3 trang 14 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

182


Giải SBT Toán 10 Chân trời sáng tạo Bài 2: Giải bất phương trình bậc hai một ẩn

Bài 3 trang 14 SBT Toán 10 Tập 2: Giải các bất phương trình bậc hai sau:

Sách bài tập Toán 10 Bài 2: Giải bất phương trình bậc hai một ẩn - Chân trời sáng tạo (ảnh 1)

 

Lời giải:

a) Tam thức bậc hai f (x) = –9x2 + 16x + 4 có a = – 9 < 0 và ∆ = 162 – 4.( – 9).4 = 112 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = 2 và x2 = 29

Áp dụng định lí về dấu tam thức bậc hai ta có:

9x2+16x+40 khi x ≤ -29 hoặc x ≥ 2.

Vậy tập nghiệm của bất phương trình là S = ;292;+.

b) Tam thức bậc hai f (x) = 6x213x33 có a = 6 > 0 và ∆ = ( –13)2 – 4.6.( –33) = 961 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = 113 và x2 = -32

Áp dụng định lí về dấu tam thức bậc hai ta có:

6x213x33 < 0 khi 32 < x < 113

Vậy tập nghiệm của bất phương trình là S = 32;113.

c) Tam thức bậc hai f ( x ) = 7x236x+5 có a = 7 > 0 và 2∆ = ( –36)2 – 4.7.5 = 1156 > 0. Do đó f(x) có hai nghiệm phân biệt là x1 = 17 và x2 = 5

Áp dụng định lí về dấu tam thức bậc hai ta có:

7x236x+50  khi 17 ≤ x ≤ 5

Vậy tập nghiệm của bất phương trình là S = 17;5.

d) Tam thức bậc hai f ( x ) = 9x2+6x1 có a = –9 < 0 và ∆ = 62 – 4.( –9).( –1) = 0. Do đó f(x) có nghiệm x = 13

Áp dụng định lí về dấu tam thức bậc hai ta có:

9x2+6x10 khi x = 13

Vậy tập nghiệm của bất phương trình là S = 13.

e) Tam thức bậc hai f ( x ) = 49x2+56x+16 = ( 7x + 4 )2

Tam thức bậc hai có nghiệm x = -47

Áp dụng định lí về dấu tam thức bậc hai ta có:

49x2+56x+16>0  khi x ≠ -47

Vậy tập nghiệm của bất phương trình là S = \47

g)

Tam thức bậc hai f ( x ) = 2x2+3x2 có ∆ = 32 – 4. ( –2 ). ( –2 ) = –7 < 0 nên f(x) vô nghiệm.

Áp dụng định lí về dấu tam thức bậc hai ta có a = –2 < 0 nên

2x2+3x20 với mọi x ∈ ℝ.

Vậy 2x2+3x20 với mọi x ∈ ℝ.

Bài viết liên quan

182