Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai

Lời giải Bài 8 trang 10 SBT Toán 10 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 10.

260


Giải SBT Toán 10 Chân trời sáng tạo Bài 1: Dấu của tam thức bậc hai

Bài 8 trang 10 SBT Toán 10 Tập 2:Xác định giá trị của các hệ số a, b, c và xét dấu của tam thức bậc hai fx=x2+bx+c trong mỗi trường hợp sau:

a) Đồ thị của hàm số fx đi qua ba điểm có toạ độ là (– 1; – 4), (0; 3) và (1; –14);

b) Đồ thị của hàm số y = f(x) đi qua ba điểm có toa độ là (0; –2), (2; 6) và (3; 13);

c) f(– 5) = 33, f (0) = 3 và f(2) = l9.

Lời giải:

a) Theo đề bài:

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (– 1; – 4) nên –4 = a – b + c (1)

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (0; 3) nên 3 = c (2)

Đồ thị của hàm số y = f(x) đi qua điểm có toạ độ là (1; – 14) nên –14 = a + b + c (3)

Thay (2) vào phương trình (1) và (3) ta có:

ab=7a+b=172a=24a+b=17a=1212+b=17a=12b=5 

Vậy f (x) = –12x2 – 5x + 3.

Xét f ( x ) = –12x2 – 5x + 3 có ∆ = (– 5)2 – 4.(–12).3 = 169 > 0 nên f (x) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = –12 < 0, ∆ > 0 và có hai nghiệm x1 = –34, x2 = 13  nên:

f (x) dương trong khoảng ( –3413 ).

f (x) âm trong khoảng -;-34 và 13;+

b) Ta có:

Đồ thị của hàm số y=fx đi qua điểm có toạ độ là (0; – 2) nên –2 = c (1)

Đồ thị của hàm số y=fx đi qua ba điểm có toạ độ là (2; 6) nên 6 = 4a + 2b + c (2)

Đồ thị của hàm số y=fx đi qua ba điểm có toạ độ là (3; 13) nên 13 = 9a + 3b + c (3).

Thay (1) vào phương trình (2) và (3) ta có:

4a + 2b=89a+3b=152a + b=43a+b=5=13.1+b=5=1b=2 

Do đó f (x) = x2 + 2x – 2.

Xét f ( x ) = x2 + 2x – 2 có ∆ = 22 – 4.( –2 ).1 = 12 nên f ( x ) có hai nghiệm phân biệt lần lượt là:

Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

Như vậy, f (x) có a = 1 > 0, ∆ > 0 và có hai nghiệm x1 = –1 + 3, x2 = –1 – 3 nên:

f (x) âm trong khoảng ( –1 – 3; –1 + 3 ).

f (x) dương trong khoảng Sách bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai - Chân trời sáng tạo (ảnh 1)

c) Ta có:

f(– 5) = 33 nên 33 = 25a – 5b + c (1)

f (0) = 3 nên 3 = c (2)

f(2) = 19 nên 19 = 4a + 2b + c (3)

Thay (2) vào phương trình (1) và (3) ta có 25a5b=304a+2b=16 . Giải hệ phương trình ta được a = 2 và b =  4.

Vậy f (x) = 2x2 + 4x + 3.

Xét f (x) = 2x2 + 4x +3 có ∆ = 42 – 4.2.3 = –8 < 0, a = 2 > 0 nên f (x) dương với mọi x ∈ ℝ.

Bài viết liên quan

260