Bài 1. Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = CE. Gọi O là trung điểm của DE, K là giao điểm của AO và BC. Chứng minh rằng ADKE là hình bình hành.
Bài 2. Cho tam giác ABC có Â ko bằng 60°. Ở phía ngoài tam giác ABC vẽ các tam giác đều ABD và ACE. Trên nửa mặt phẳng bờ BC có chửa A, vẽ tam giác đều BCK. Chứng minh rằng ADKE là hình bình hành.
Quảng cáo
1 câu trả lời 455
Vẽ DM // BC và ON // BC
▲ADM cân tại A
=>AD=AM=CE
▲DME:Olà trung điểm của DE ,ON//DM=>N là trung điểm ME
=>N là trung điểm AC
Mà ON//BC nên O là trung điểm AK => ADKE là hbh
Quảng cáo
Câu hỏi hot cùng chủ đề
-
5 85939
-
Hỏi từ APP VIETJACK7 44628
-
Cho tam giác MNP vuông tại M,đường cao MH
a, Chứng minh tam giác HMN đồng dạng với tam giác MNP
b, chứng minh hệ thức MH2=NH.PH
c, Lấy điểm E tùy ý trên cạnh MP,vẽ điểm F trên cạnh MN sao cho góc FHE =90 độ. Chứng minh tam giác NFH đồng dạng với tam giác MEH và góc NMH=góc FEH
d,Xác định vị trí điểm E trên MP sao cho diện tích tam giác HEF đạt giá trị nhỏ nhất
6 38303