Hoàng Nguyễn Hữu
Hỏi từ APP VIETJACK
Cho tam giác ABC cân tại A, trung tuyến AM (với M thuộc BC).
a. Chứng minh tam giác ABM = tam giác ACM
b. Kẻ BH vuông góc vs AC (vs H thuộc AC), CK vuông góc vs AB (vs K thuộc AB). Chứng minh tam giác BỨC = tam giác CKB
c. So sánh AM và AB
Mong mọi người giúp ạ...
a. Chứng minh tam giác ABM = tam giác ACM
b. Kẻ BH vuông góc vs AC (vs H thuộc AC), CK vuông góc vs AB (vs K thuộc AB). Chứng minh tam giác BỨC = tam giác CKB
c. So sánh AM và AB
Mong mọi người giúp ạ...
Quảng cáo
1 câu trả lời 287
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó ΔAMB=ΔAMC
b/ Ta có : AE = EB = AB / 2
AN = NC = AC / 2
mà AB=AC
nên AE=AN=NC=EB
Xét ΔEBC và ΔNCB có
EB=NC
^EBC= ^NCB
BC chung
Do đó: ΔEBC=ΔNCB
=> ^ECB = ^NBC
=> ^GBC= ^GBC
=>ΔGBC cân tại G
=>GB=GC
Xét ΔABG và ΔACG có
AB=AC
BG=CG
AG chung
Do đó: ΔABG=ΔACG
=> ^BAG = ^CAG
=>AG là phân giác của góc BAC
Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: GB=GC
=>G nằm trên đường trung trực của BC(2)
Ta có: MB=MC
=>M nằm trên đường trung trực của BC(3)
Từ (1),(2),(3) suy ra A,G,M thẳng hàng
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK121162
-
Đã trả lời bởi chuyên gia
81971 -
Đã trả lời bởi chuyên gia
59862 -
Đã trả lời bởi chuyên gia
39757
Gửi báo cáo thành công!
