Quảng cáo
1 câu trả lời 240
To solve the equation
7x−16=16−x5−2x,\frac{7x - 1}{6} = \frac{16 - x}{5} - 2x,67x−1=516−x−2x,
we start by eliminating the fractions by finding a common denominator. The least common multiple of 666 and 555 is 303030. So, we will multiply every term in the equation by 303030:
30⋅7x−16=30⋅(16−x5−2x).30 \cdot \frac{7x - 1}{6} = 30 \cdot \left(\frac{16 - x}{5} - 2x\right).30⋅67x−1=30⋅(516−x−2x).
This simplifies to:
5(7x−1)=6(16−x)−60x.5(7x - 1) = 6(16 - x) - 60x.5(7x−1)=6(16−x)−60x.
Now distribute on both sides:
35x−5=96−6x−60x.35x - 5 = 96 - 6x - 60x.35x−5=96−6x−60x.
35x−5=96−66x.35x - 5 = 96 - 66x.35x−5=96−66x.
Next, we'll add 66x66x66x to both sides to combine the xxx terms:
35x+66x−5=96.35x + 66x - 5 = 96.35x+66x−5=96.
101x−5=96.101x - 5 = 96.101x−5=96.
Next, add 555 to both sides:
101x=101.101x = 101.101x=101.
Now, divide both sides by 101101101:
x=1.x = 1.x=1.
Thus, the solution to the equation is
1.\boxed{1}.1.
To verify, substitute x=1x = 1x=1 back into the original equation:
Left-hand side:
7(1)−16=66=1.\frac{7(1) - 1}{6} = \frac{6}{6} = 1.67(1)−1=66=1.
Right-hand side:
16−15−2(1)=155−2=3−2=1.\frac{16 - 1}{5} - 2(1) = \frac{15}{5} - 2 = 3 - 2 = 1.516−1−2(1)=515−2=3−2=1.
Both sides are equal, confirming that the solution x=1x = 1x=1 is correct.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107278
-
Hỏi từ APP VIETJACK67830
-
44998
-
38171
