Quảng cáo
1 câu trả lời 464
Bước 1: Chuyển bất phương trình về dạng phương trình
Để dễ dàng hình dung, ta chuyển bất phương trình thành phương trình tương ứng:
2x+3y=−6
Bước 2: Vẽ đồ thị của phương trình
Đây là một phương trình đường thẳng. Để vẽ đường thẳng này, ta tìm hai điểm cắt với trục tọa độ x và y:
Cắt trục yyy: Khi x=0, ta có:
2(0)+3y=−6 ⟹ y=−2
Vậy điểm cắt với trục y là (0,−2)
Cắt trục xxx: Khi y=0y = 0y=0, ta có:
2x+3(0)=−6 ⟹ x=−3
Vậy điểm cắt với trục x là (−3,0)
Như vậy, đường thẳng 2x+3y=−6 cắt trục x tại điểm (−3,0) và cắt trục y tại điểm (0,−2).
Bước 3: Xác định miền nghiệm
Bất phương trình 2x+3y≥ −6 biểu diễn miền nghiệm nằm trên và phía trên đường thẳng 2x+3y=−6, bao gồm cả đường thẳng này.
Để kiểm tra, ta chọn một điểm nằm trên mặt phẳng và thay vào bất phương trình để xác định miền nghiệm. Một điểm dễ chọn là (0,0):
2(0)+3(0)= 0≥ −6
Điều này đúng, do đó, miền nghiệm nằm phía trên đường thẳng, bao gồm cả đường thẳng.
Kết luận:
Miền nghiệm của bất phương trình 2x+3y≥ −6 là khu vực phía trên và trên đường thẳng 2x+3y=−6, bao gồm cả đường thẳng đó.
Quảng cáo
Bạn muốn hỏi bài tập?
