Cho ba điểm A(1; 0; 0), B(0; 2; 0) và C(0; 0; 3). Chứng minh rằng nếu điểm M(x; y; z) thỏa mãn MA2 = MB2 + MC2 thì M thuộc một mặt cầu (S). Tìm tâm và bán kính của (S).
Quảng cáo
1 câu trả lời 173
1 năm trước
MA2 = MB2 + MC2
Û (x – 1)2 + y2 + z2 = x2 + (y – 2)2 + z2 + x2 + y2 + (z – 3)2
Û x2 – 2x + 1 + y2 + z2 = x2 + y2 – 4y + 4 + z2 + x2 + y2 + z2 – 6z + 9
Û x2 + 2x + 1 + y2 – 4y + 4 + z2 – 6z + 9 – 2 = 0
Û (x + 1)2 + (y – 2)2 + (z – 3)2 = 2.
Do đó M luôn thuộc vào mặt cầu S với tâm I(−1; 2; 3) và \(R = \sqrt 2 \).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272
Gửi báo cáo thành công!

