Trong các phương trình sau, phương trình nào là phương trình mặt cầu? Xác định tâm và bán kính của mặt cầu đó.
a) x2 + y2 + z2 + 5x – 7y + z – 1 = 0;
b) x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0;
c) x2 + y2 + z2 – x – y – z + \(\frac{1}{2}\) = 0.
Quảng cáo
1 câu trả lời 106
a) Phương trình x2 + y2 + z2 + 5x – 7y + z – 1 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với \(a = - \frac{5}{2};b = \frac{7}{2};c = - \frac{1}{2};d = - 1\).
Có \({a^2} + {b^2} + {c^2} - d = {\left( { - \frac{5}{2}} \right)^2} + {\left( {\frac{7}{2}} \right)^2} + {\left( { - \frac{1}{2}} \right)^2} + 1 = \frac{{79}}{4} > 0\).
Do đó đây là phương trình mặt cầu với tâm \(I\left( { - \frac{5}{2};\frac{7}{2}; - \frac{1}{2}} \right),R = \frac{{\sqrt {79} }}{2}\).
b) Phương trình x2 + y2 + z2 + 4x + 6y – 2z + 100 = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với a = −2; b = −3; c = 1 và d = 100.
Có a2 + b2 + c2 – d = 4 + 9 + 1 – 100 = −86 < 0.
Do đó đây không phải là phương trình mặt cầu.
c) Phương trình x2 + y2 + z2 – x – y – z + \(\frac{1}{2}\) = 0 có dạng x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0 với \(a = \frac{1}{2};b = \frac{1}{2};c = \frac{1}{2};d = \frac{1}{2}\).
Có \({a^2} + {b^2} + {c^2} - d = {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^2} + {\left( {\frac{1}{2}} \right)^2} - \frac{1}{2} = \frac{1}{4} > 0\).
Do đó đây là phương trình mặt cầu với tâm \(I\left( {\frac{1}{2};\frac{1}{2};\frac{1}{2}} \right)\) và \(R = \frac{1}{2}\).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

