Cho hai đường thẳng d và d' có vectơ chỉ phương lần lượt là , .
a) Nhắc lại định nghĩa góc giữa hai đường thẳng d và d' trong không gian.
b) Vectơ \(\overrightarrow b = \left( { - 2; - 1; - 3} \right)\) có phải là một vectơ chỉ phương của d không?
c) Giải thích tại sao ta lại có đẳng thức cos(d, d') = \(\left| {\cos \left( {\overrightarrow a ,\overrightarrow {a'} } \right)} \right| = \left| {\cos \left( {\overrightarrow b ,\overrightarrow {a'} } \right)} \right|\).
d) Nêu cách tìm côsin của góc giữa hai đường thẳng theo côsin của góc giữa hai vectơ chỉ phương của hai đường thẳng đó.
Quảng cáo
1 câu trả lời 55
a) Góc giữa hai đường thẳng d và d' trong không gian, kí hiệu (d, d') là góc giữa hai đường thẳng a và b cùng đi qua một điểm và lần lượt song song hoặc trùng với d và d'.
b) \(\overrightarrow b = \left( { - 2; - 1; - 3} \right) = - \overrightarrow a \) . Do đó \(\overrightarrow b \) cũng là vectơ chỉ phương của đường thẳng d.
c) Vì \(\overrightarrow a ,\overrightarrow {a'} \) lần lượt là vectơ chỉ phương của hai đường thẳng d và d' nên:
+) (d, d') = \(\left( {\overrightarrow a ,\overrightarrow {a'} } \right)\) nếu \(0^\circ \le \left( {\overrightarrow a ,\overrightarrow {a'} } \right) \le 90^\circ \)
+) \(\left( {d,d'} \right) = 180^\circ - \left( {\overrightarrow a ,\overrightarrow {a'} } \right)\) nếu \(90^\circ < \left( {\overrightarrow a ,\overrightarrow {a'} } \right) \le 180^\circ \).
Do đó \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\overrightarrow a ,\overrightarrow {a'} } \right)} \right| = \left| {\cos \left( {\overrightarrow b ,\overrightarrow {a'} } \right)} \right|\).
d) \(\cos \left( {d,d'} \right) = \left| {\cos \left( {\overrightarrow a ,\overrightarrow {a'} } \right)} \right| = \frac{{\left| {\overrightarrow a .\overrightarrow {a'} } \right|}}{{\left| {\overrightarrow a } \right|\left| {\overrightarrow {a'} } \right|}} = \frac{{\left| {2.3 + 1.2 + 3.\left( { - 8} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {3^2}} .\sqrt {{3^2} + {2^2} + {{\left( { - 8} \right)}^2}} }} = \frac{{16}}{{7\sqrt {22} }}\).
Quảng cáo
Bạn muốn hỏi bài tập?

