Xét vị trí tương đối giữa hai đường thẳng d và d' trong mỗi trường hợp sau.
a) \(d:\left\{ \begin{array}{l}x = 2t\\y = 1 - t\\z = 2 - 3t\end{array} \right.\) và \[d':\frac{{x - 2}}{4} = \frac{y}{7} = \frac{{z + 1}}{{11}}\];
b) \(d:\frac{{x - 4}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{2}\) và \(d':\frac{{x - 2}}{3} = \frac{{y - 1}}{2} = \frac{{z - 1}}{9}\).
Quảng cáo
1 câu trả lời 78
a) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {2; - 1; - 3} \right)\), \(\overrightarrow {{a_2}} = \left( {4;7;11} \right)\).
Ta có \(\frac{2}{4} \ne \frac{{ - 1}}{7}\) nên \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Xét phương trình d' ở dạng tham số \(\left\{ \begin{array}{l}x = 2 + 4t'\\y = 7t'\\z = - 1 + 11t'\end{array} \right.\).
Xét hệ phương trình \[\left\{ \begin{array}{l}2 + 4t' = 2t\\7t' = 1 - t\\ - 1 + 11t' = 2 - 3t\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}4t' - 2t = - 2\\7t' + t = 1\\11t' + 3t = 3\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}t' = 0\\t = 1\\11.0 + 3.1 = 3\end{array} \right.\].
Suy ra hệ có nghiệm duy nhất.
Do đó d và d' cắt nhau.
b) Đường thẳng d và d' lần lượt có vectơ chỉ phương là \(\overrightarrow {{a_1}} = \left( {1;2;2} \right)\), \(\overrightarrow {{a_2}} = \left( {3;2;9} \right)\).
Ta có \(\frac{1}{3} \ne \frac{2}{2}\) do đó \(\overrightarrow {{a_1}} ,\overrightarrow {{a_2}} \) không cùng phương nên d và d' chéo nhau hoặc cắt nhau.
Ta có phương trình đường thẳng d và d' viết dưới dạng tham số lần lượt là:
\(d:\left\{ \begin{array}{l}x = 4 + t\\y = 1 + 2t\\z = 1 + 2t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 2 + 3t'\\y = 1 + 2t'\\z = 1 + 9t'\end{array} \right.\).
Ta có hệ phương trình \(\left\{ \begin{array}{l}4 + t = 2 + 3t'\\1 + 2t = 1 + 2t'\\1 + 2t = 1 + 9t'\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t - 3t' = - 2\\2t - 2t' = 0\\2t - 9t' = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = 1\\2.1 - 9.1 = 0\end{array} \right.\) (vô nghiệm).
Suy ra hệ vô nghiệm. Do đó d và d' chéo nhau.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

