Trên mặt phẳng tọa độ Oxy, vẽ nửa đường tròn tâm O, bán kính r = 2 nằm phía trên trục Ox. Gọi D là hình phẳng giới hạn bởi nửa đường tròn, trục Ox và hai đường thẳng x = −1, x = 1. Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục Ox.

Quảng cáo
1 câu trả lời 110
1 năm trước
Phương trình nửa đường tròn nằm phía trên trục Ox có r = 2 là: \(y = \sqrt {4 - {x^2}} \).
Thể tích cần tính là:
\(V = \pi \int\limits_{ - 1}^1 {\left( {4 - {x^2}} \right)dx} \)\( = \pi \left. {\left( {4x - \frac{{{x^3}}}{3}} \right)} \right|_{ - 1}^1 = \pi \left( {\frac{{11}}{3} + \frac{{11}}{3}} \right) = \frac{{22\pi }}{3}\).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272
Gửi báo cáo thành công!

