Người ta muốn xây một bể bơi có dạng hình hộp chữ nhật, thể tích 1 800 m3 và chiều sâu 2 m (Hình 7). Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Cần chọn chiều dài và chiều rộng của bể bằng bao nhiêu để tiết kiệm chi phí xây dựng bể nhất?

Quảng cáo
1 câu trả lời 688
Gọi x, y (x > 0, y > 0, tính bằng mét) lần lượt là chiều dài và chiều rộng của bể.
Thể tích của bể là V = 2xy = 1 800 (m3), suy ra
(m).
Diện tích đáy bể là Sđ = xy (m2).
Diện tích thành bể là St = 2(x + y) ∙ 2 = 4(x + y) (m2).
Giả sử chi phí để xây mỗi đơn vị diện tích thành bể là a (đồng, a > 0).
Khi đó chi phí để xây mỗi đơn vị diện tích đáy bể là 2a (đồng).
Tổng chi phí để xây bể bơi là
C = 2axy + a ∙ 4(x + y) =
(đồng).
Xét hàm số f(x) = 1800a + 4ax +
với x ∈ (0; + ∞) và a > 0.
Ta có f'(x) = 4a –
;
f'(x) = 0 ⇔
.
Bảng biến thiên:

Từ bảng biến thiên, ta có
, đạt được tại x = 30.
Với x = 30 m thì ta có
.
Vậy với chiều rộng và chiều dài của bể bằng nhau và bằng 30 m thì tiết kiệm được chi phí xây dựng bể nhất.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

