Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
b) y = – x3 + 3x2 – 1;
Quảng cáo
1 câu trả lời 1674
b) y = – x3 + 3x2 – 1
1) Tập xác định: ℝ.
2) Sự biến thiên:
Giới hạn tại vô cực: .
y' = – 3x2 + 6x;
y' = 0 ⇔ – 3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên:

Hàm số đã cho đồng biến trên khoảng (0; 2); nghịch biến trên mỗi khoảng (– ∞; 0) và (2; + ∞).
Hàm số đạt cực đại tại x = 2, yCĐ = 3; đạt cực tiểu tại x = 0, yCT = – 1.
3) Đồ thị
Giao điểm của đồ thị với trục tung: (0; – 1).
Giao điểm của đồ thị với trục hoành:
Giải phương trình – x3 + 3x2 – 1 = 0, ta thấy phương trình có 3 nghiệm phân biệt nên đồ thị hàm số cắt trục hoành tại 3 điểm.
Đồ thị hàm số đi qua các điểm (– 1; 3), (0; – 1), (1; 1), (2; 3) và (3; – 1).

Vậy đồ thị hàm số y = – x3 + 3x2 – 1 được cho như hình vẽ trên.
Tâm đối xứng của đồ thị hàm số đó là điểm I(1; 1).
Quảng cáo
Bạn muốn hỏi bài tập?

