Hongngan Tran
Hỏi từ APP VIETJACK
Cho ∆ ABC có AB<AC. Gọi M là trung điểm của cạnh BC . Đường thẳng d vuông góc với BC tại M . Tia phân giác của góc A cắt d tại I. Qua I kẻ các đường vuông góc với hai cạnh của góc A ,cắt các tia AB và AC theo thứ tự tại H và K. Chứng minh rằng :
a) ∆ AIH = ∆AIK
b) BH = CK
a) ∆ AIH = ∆AIK
b) BH = CK
Quảng cáo
1 câu trả lời 380
Để chứng minh rằng AAIH=AAIK và BH=CK, ta có thể sử dụng đồng dạng của các tam giác.
Ta có tam giác ABC với ABgóc với BC tại M và tia phân giác của góc A cắt d tại I.
Qua I kẻ các đường vuông góc với hai cạnh của góc A, cắt các tia AB và AC theo thứ tự tại H và K.
Theo định lí đồng dạng tam giác, ta có:
Tam giác AHI đồng dạng với tam giác AKI (vì chúng có cùng một góc A và góc I bằng nhau do là tia phân giác của góc A).
Tam giác ABH đồng dạng với tam giác ACK (vì chúng có hai góc vuông B và C bằng nhau).
Do đó, ta có AAIH=AAIK và BH=CK.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK120962
-
Đã trả lời bởi chuyên gia
81713 -
Đã trả lời bởi chuyên gia
59651 -
Đã trả lời bởi chuyên gia
39669
Gửi báo cáo thành công!
