Quảng cáo
1 câu trả lời 425
1 năm trước
Đáp án đúng là: B
Phương trình ⇔ (*) có nghiệm trên [-π; 2π]
⇔ đường thẳng cắt đồ thị hàm số y = f(sin x) tại các điểm trên [-π; 2π].
Đặt sin x = t ⇒ x ∈ [-π; 2π] ⇒ t ∈ [-1; 1].
Ta có bảng biến thiên:
![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid6-1694745883.png)
Dựa vào bảng biến thiên ta có đường thẳng cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt.
Ta có (*) ⇔
![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 3)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid7-1694745952.png)
Dựa vào đồ thị hàm số ta thấy:
• Đường thẳng y = t1 cắt đồ thị hàm số y = sin x tại hai điểm phân biệt trong [-π; 2π].
• Đường thẳng y = t2 cắt đồ thị hàm số y = sin x tại bốn điểm phân biệt trong [-π; 2π].
Như vậy đường thẳng cắt đồ thị hàm số y = f(sin x) tại 6 điểm phân biệt trên [-π; 2π].
Vậy phương trình đã cho có 6 nghiệm phân biệt.
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
Gửi báo cáo thành công!

![Cho hàm số f(x) có bảng biến thiên như sau: Số nghiệm thuộc đoạn [π; 2π] của phương trình 2f(sin x) + 3 = 0 là: A. 4. B. 6. C. 3. D. 8. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2023/09/blobid5-1694745831.png)
