Câu 1. Một người gửi tiết kiệm vào một ngân hàng với lãi suất 7% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đo thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Quảng cáo
2 câu trả lời 224
1 năm trước
Để giải bài toán này, ta có thể sử dụng công thức tính lãi kép sau:
A = P(1 + r/n)^(nt)*
Trong đó:
A: Số tiền thu được sau n năm
P: Số tiền gửi ban đầu
r: Lãi suất (%)
n: Số lần tính lãi trong một năm
**Ta cần tìm giá trị của n để A bằng 2P.
Giải:
A = 2P
P(1 + 7/1)^(1t) = 2P*
(1 + 7/100)^t = 2
t ≈ 10.05
Vậy:
Người đó cần gửi tiết kiệm ít nhất 10 năm để thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
134838 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
75920 -
Đã trả lời bởi chuyên gia
71641 -
Đã trả lời bởi chuyên gia
47575
Gửi báo cáo thành công!
