Cho 2 vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\left| {\overrightarrow b } \right| = 3;\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi α là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Tìm cosα?
Quảng cáo
1 câu trả lời 109
Ta có: \(\left| {\overrightarrow a - \overrightarrow b } \right| = 4 \Rightarrow {\left| {\overrightarrow a - \overrightarrow b } \right|^2} = 16\)
⇒ \({\overrightarrow a ^2} + {\overrightarrow b ^2} - 2\overrightarrow a \overrightarrow b = 16\)
⇒ \[2\overrightarrow a .\overrightarrow b = {\overrightarrow a ^2} + {\overrightarrow b ^2} - 16 = {4^2} + {3^2} - 16 = 9\]
⇒ \[\overrightarrow a .\overrightarrow b = \frac{9}{2}\]
Suy ra: \[\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{\frac{9}{2}}}{{3.4}} = \frac{3}{8}\].
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

