Quảng cáo
1 câu trả lời 188
Xét số tự nhiên có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \).
TH1: a1 có thể bằng 0 hoặc khác 0.
Với a1 có thể bằng 0 hoặc khác 0, mỗi số có dạng trên là một hoán vị của 10 chữ số đã cho.
Do đó, số các số có thể lập được trong trường hợp 1 là:
P10 = 10! (số).
Trường hợp 2: a1 = 0.
Vì a1 = 0 cố định nên 9 chữ số sau a1 đều khác 0 và chỉ có 9 chữ số đó thay đổi.
Suy ra, mỗi số có dạng \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}{a_9}{a_{10}}} \) là một hoán vị của 9 chữ số khác 0 đã cho.
Do đó, số các số có thể lập được trong trường hợp 2 là:
P9 = 9! (số).
Vậy số các số tự nhiên có 10 chữ số đôi một khác nhau có thể lập được là:
10! – 9! = 3 265 920 (số).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

