Cho hình vuông ABCD. Trên cạnh BC lấy điểm N. Từ A kẻ đường thẳng vuông góc với AN cắt đường thẳng CD tại Q. Gọi I là trung điểm của NQ. Gọi M là giao điểm AI và CD. Qua N dựng đường thẳng song song với CD cắt AI tại P. Chứng minh rằng:
a) ∆PIN = ∆MIQ.
b) Tứ giác MNPQ là hình thoi.
Quảng cáo
1 câu trả lời 82
(H.3.42). a) Xét hai tam giác PIN và MIQ có (hai góc đối đỉnh), QI = IN, (do NP // QM)
⇒ ∆PIN = ∆MIQ (g.c.g)
⇒ QM = NP.
b) Tứ giác MNPQ có PN // MQ, QM = NP nên là hình bình hành.
Ta chứng minh MNPQ có hai đường chéo vuông góc.
Vì AQ ⊥ AN nên
Xét hai tam giác vuông ADQ và ABN có AD = AB, (chứng minh trên).
⇒ ∆ADQ = ∆ABN (cạnh góc vuông – góc nhọn)
⇒ AQ = AN.
Do đó tam giác AQN cân tại A, mà AI là đường trung tuyến của tam giác AQN
⇒ AI là đường cao của tam giác AQN, tức là AI ⊥ QN, hay PM ⊥ QN.
Hình bình hành MNPQ có hai đường chéo PM ⊥ QN nên là hình thoi.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
107437
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68061 -
Đã trả lời bởi chuyên gia
52846 -
Đã trả lời bởi chuyên gia
47344 -
Đã trả lời bởi chuyên gia
45400 -
Đã trả lời bởi chuyên gia
45045 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38412 -
Đã trả lời bởi chuyên gia
38191
