Quảng cáo
1 câu trả lời 55
1 năm trước
Lời giải
Xét hiệu:
\(\frac{1}{a} + \frac{1}{b} - \frac{4}{{a + b}} = \frac{{b\left( {a + b} \right) + a\left( {a + b} \right) - 4ab}}{{ab\left( {a + b} \right)}}\)
\( = \frac{{{a^2} - 2ab + {b^2}}}{{ab\left( {a + b} \right)}}\)
\( = \frac{{{{\left( {a - b} \right)}^2}}}{{ab\left( {a + b} \right)}} \ge 0\), vì \({\rm{a}}{\rm{, b}} > 0\)
Dấu “ = ” xảy ra khi a = b
Vậy \(\frac{1}{a} + \frac{1}{b} \ge \frac{4}{{a + b}}\) với a > 0 và b > 0.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272
Gửi báo cáo thành công!

