Chứng minh phương trình sau đây vô nghiệm:
5sin 2x + sin x + cos x + 6 = 0.
Quảng cáo
1 câu trả lời 66
1 năm trước
Lời giải
Đặt \[t = \sin x + \cos x = \sqrt 2 \sin \left( {x + \frac{\pi }{4}} \right)\]
ĐK: \( - \sqrt 2 \le t \le \sqrt 2 \)
Ta có: 5sin 2x + sin x + cos x + 6 = 0
Û 5(sin 2x + 1) + sin x + cos x + 1 = 0
Û 5(sin x + cos x)2 + sin x + cos x + 1 = 0
Þ 5t2 + t + 1 = 0
Suy ra không tồn tại giá trị nào của t thỏa mãn hay phương trình đã cho vô nghiệm
Vậy phương trình 5sin 2x + sin x + cos x + 6 = 0 vô nghiệm.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272
Gửi báo cáo thành công!

