Nguyễn Hoàng Nam
Hỏi từ APP VIETJACK
Tìm n thuộc N sao cho(n-2)!/n! - n!/(n+1)! =1/20
Quảng cáo
1 câu trả lời 170
Ta có:
(n-2)!/n! - n!/(n+1)! = 1/20
(n-2)!(n+1)!/n!n! - n!(n-2)!/n!(n+1)! = 1/20
(n+1)! - (n-2)!/n!(n+1)! = 1/20
(n+1)(n)(n-1)! - (n-2)(n-3)!/n!(n+1)! = 1/20
(n+1)(n)(n-1)! - (n-2)(n-3)! = n!(n+1)/20
Ta có thể viết lại như sau:
(n+1)(n)(n-1)! - (n-2)(n-3)! = (n+1)!/20
(n+1)(n)(n-1)! - 20(n-2)(n-3)! = (n+1)!
(n+1)(n) - 20(n-2) = 20
n^2 + n - 40n + 40 = 400
n^2 - 39n + 40 = 0
(n-4)(n-10) = 0
Vậy n = 4 hoặc 10.
Tuy nhiên, n thuộc N, nên n phải là số nguyên dương. Do đó, n = 4 là nghiệm duy nhất của bài toán.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Đã trả lời bởi chuyên gia
89168 -
Đã trả lời bởi chuyên gia
59837 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
59098 -
Đã trả lời bởi chuyên gia
50887 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
48368 -
Đã trả lời bởi chuyên gia
38618
Gửi báo cáo thành công!
