Cho tam giác ABC có ba góc nhọn đường cao AH
a. CMR: AB2 + AC2 = \(\frac{{BC}}{2}\) + 2AM2
b. AC2 − AB2 = 2BC.HM (AC > AB)
Quảng cáo
1 câu trả lời 75
a) Ta có: AB2 + AC2 = 2AH2 + BH2 + CH2
= 2AM2 − 2HM2 + (BM − HM)2 + (CM + HM)2
= 2AM2 − 2HM2 + BM2 − 2BM.HM + HM2 + CM2 + 2CM.HM + HM2
= 2AM2 + BC2 − 2BM.CM = 2AM2 + BC2 − \(\frac{{2B{C^2}}}{4}\)
= 2AM2 + \(\frac{{B{C^2}}}{2}\)(đpcm)
b) Ta có: AC2 – AB2 = AH2 + HC2 – BH2 – AH2
= HC2 – BH2 = (CM + HM)2 − (BM − HM)2
= CM2 + 2CM.HM + HM2 – BM2 + 2BM.HM – HM2
= 2HM(CM + BM)
= 2HM.BC (đpcm).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129652 -
Đã trả lời bởi chuyên gia
104087 -
Đã trả lời bởi chuyên gia
94063 -
Đã trả lời bởi chuyên gia
69340
Gửi báo cáo thành công!

