Quảng cáo
1 câu trả lời 97
Ta có xy3 + y2 + 4xy = 6
⇔ xy3 + y2 + 4xy + 4 = 6 + 4
⇔ y2(xy + 1) + 4(xy + 1) = 10
⇔ (xy + 1)(y2 + 4) = 10 = 5 . 2 = (– 5) . (– 2)
Vì y2 + 4 ≥ 4 với mọi y
Nên \(\left\{ \begin{array}{l}xy + 1 = 2\\{y^2} + 4 = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 1\\{y^2} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}xy = 1\\\left[ \begin{array}{l}y = 1\\y = - 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.\\\left\{ \begin{array}{l}x = - 1\\y = - 1\end{array} \right.\end{array} \right.\)
Vậy (x; y) ∈ {(1; 1); (–1; –1)}.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129652 -
Đã trả lời bởi chuyên gia
104087 -
Đã trả lời bởi chuyên gia
94063 -
Đã trả lời bởi chuyên gia
69340

