Quảng cáo
1 câu trả lời 72
Ta có: b2 = ac suy ra: \(\frac{a}{b}\,\, = \,\,\frac{b}{c}\,\,\)
⇒ \({\left( {\frac{a}{b}} \right)^2}\,\, = \,\,{\left( {\frac{b}{c}} \right)^2}\, = \,\,\,\frac{a}{b}\,\,.\,\,\frac{b}{c}\,\, = \,\,\,\frac{a}{c}\,\, = \,\,\,\frac{{{a^2}}}{{{b^2}}}\,\, = \,\frac{{{b^2}}}{{{c^2}}}\,\,\)
⇒\[\frac{a}{c}\,\, = \,\,\,\frac{{{a^2}}}{{{b^2}}}\,\, = \,\frac{{{b^2}}}{{{c^2}}}\,\, = \,\frac{{{a^2} + {b^2}}}{{{b^2} + {c^2}}}\,\](tính chất dãy tỉ số bằng nhau)
Vậy: \[\frac{a}{c}\,\, = \,\,\frac{{{a^2} + \,{b^2}}}{{{c^2} + {b^2}}}\].
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129652 -
Đã trả lời bởi chuyên gia
104087 -
Đã trả lời bởi chuyên gia
94063 -
Đã trả lời bởi chuyên gia
69340
Gửi báo cáo thành công!

