Trên các cạnh AB, BC, CA của tam giác ABC lần lượt lấy C1, A1, B1 sao cho các đường thẳng AA1, BB1, CC1 đồng quy tại O. Đường thẳng qua O // AC cắt A1B1, B1C1, tại K và M tương ứng. Chứng minh rằng: OK = OM.
Quảng cáo
1 câu trả lời 86
Qua B vẽ đường thẳng song song với AC cắt A1B1 và B1C1 lần lượt tại K1 và M1.
Theo giả thiết: MK // AC
Mà M1K1 // AC (theo cách vẽ)
Suy ra: MK // M1K1.
Xét tam giác B1K1M1 có MK // M1K1 suy ra: \(\frac{{MO}}{{B{M_1}}}\, = \,\,\frac{{OK}}{{B{K_1}}}\,\)(*)
Xét tam giác AB1C1 và tam giác BM1C1 có:
\(\widehat {A{C_1}{B_1}} = \,\widehat {B{C_1}{M_1}}\)(2 góc đối đỉnh)
\(\widehat {A{B_1}{C_1}} = \,\widehat {B{M_1}{C_1}}\)(2 góc so le trong vì AC // M1K1)
Suy ra: ∆ AB1C1 ᔕ ∆ BM1C1 (g.g)
Nên \(\frac{{B{M_1}}}{{A{B_1}}}\, = \,\frac{{B{C_1}}}{{A{C_1}}}\)⇒ \(B{M_1} = A{B_1}\,.\,\,\frac{{B{C_1}}}{{A{C_1}}}\)(1)
Tương tự: ∆ CB1A1 ᔕ ∆ BK1A1 (g.g)
Nên \(\frac{{B{K_1}}}{{C{B_1}}}\, = \,\frac{{B{A_1}}}{{C{A_1}}}\)⇒ \(B{K_1} = C{B_1}\,.\,\,\frac{{B{A_1}}}{{C{A_1}}}\)(2)
Lấy (1) chia (2) ta được: \(\frac{{B{M_1}}}{{B{K_1}}}\, = \frac{{A{B_1}}}{{B{C_1}}}\,.\,\,\frac{{C{A_1}}}{{B{A_1}}}\,.\,\frac{{C{B_1}}}{{A{C_1}}}\,\, = \,\,1\) (áp dụng định lí Xê–va)
Suy ra: BM1 = BK1 (**)
Từ (*) và (**), ta có: OM = OK
Vậy OM = OK.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129652 -
Đã trả lời bởi chuyên gia
104087 -
Đã trả lời bởi chuyên gia
94063 -
Đã trả lời bởi chuyên gia
69340

