Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) có đồ thị trong hình bên. Hỏi phương trình \(y = a{x^3} + b{x^2} + cx + 2 = 0\) có bao nhiêu nghiệm?

A. Phương trình có đúng một nghiệm.
B. Phương trình có đúng hai nghiệm.
D. Phương trình có đúng ba nghiệm
Quảng cáo
1 câu trả lời 205
Đáp án D
Phương pháp:
Số nghiệm của phương trình \(a{x^3} + b{x^2} + cx + d + 2 = 0\) bằng số giao điểm của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) và đường thẳng \(y = - 2\).
Cách giải:
Số nghiệm của phương trình \(a{x^3} + b{x^2} + cx + d + 2 = 0\) bằng số giao điểm của đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) và đường thẳng \(y = - 2\).
Quan sát đồ thị hàm số, ta thấy: đồ thị hàm số \(y = a{x^3} + b{x^2} + cx + d\) cắt đường thẳng \(y = - 2\) tại 3 điểm phân biệt \( \Rightarrow \) Phương trình đã cho có đúng ba nghiệm.
Quảng cáo
Bạn muốn hỏi bài tập?

