Chứng minh rằng đa thức
chia hết cho đa thức
Quảng cáo
1 câu trả lời 750
2 năm trước
Tìm cách giải. Đa thức g(x) bậc n có n nghiệm phân biệt. Nếu mọi nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x) thì đa thức f(x) chia hết cho đa thức g(x). Nhận thấy trong bài g(x) có hai nghiệm là x = 2; x = 3, nên chúng ta chỉ cần kiểm tra xem x= 2; x = 3 có là nghiệm của f(x) không?
Trình bày lời giải
Ta có:
nên
nên ![]()
Nên f(x) chia hết cho ![]()
Quảng cáo
Bạn muốn hỏi bài tập?
Câu hỏi hot cùng chủ đề
-
107278
-
Hỏi từ APP VIETJACK67830
-
44998
-
38171
Gửi báo cáo thành công!
