Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng
Quảng cáo
1 câu trả lời 451
Đáp án B
Điều kiện: \(\left\{ \begin{array}{l}x > 1\\x \ne 3\end{array} \right.\).
Ta có \(2{\log _2}\left( {2{\rm{x}} - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2 \Leftrightarrow 2{\log _2}\left( {2{\rm{x}} - 2} \right) + 2{\log _2}\left| {x - 3} \right| = 2\)
\( \Leftrightarrow {\log _2}\left( {2{\rm{x}} - 2} \right) + {\log _2}\left| {x - 3} \right| = 1 \Leftrightarrow {\log _2}\left[ {\left( {2{\rm{x}} - 2} \right)\left| {x - 3} \right|} \right] = 1 \Leftrightarrow \left( {2{\rm{x}} - 2} \right)\left| {x - 3} \right|2 \Leftrightarrow \left( {x - 1} \right)\left| {x - 3} \right| = 1\) (*)
Với \(x \ge 3\) ta có (*) \( \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = 1 \Leftrightarrow {x^2} - 4{\rm{x}} + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2 + \sqrt 2 \\x = 2 - \sqrt 2 {\rm{ }}\left( \ell \right)\end{array} \right.\)
Với \(x < 3\) ta có (*) \( \Leftrightarrow \left( {x - 1} \right)\left( {x - 3} \right) = - 1 \Leftrightarrow {x^2} - 4{\rm{x}} + 4 = 0 \Leftrightarrow x = 2\).
Do đó tổng các nghiệm của phương trình là \(4 + \sqrt 2 \).
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
129637 -
Đã trả lời bởi chuyên gia
104061 -
Đã trả lời bởi chuyên gia
94054 -
Đã trả lời bởi chuyên gia
69272

