Chứng minh rằng nếu n + 1 và 2n + 1 (n ∈ N) đều là số chính phương thì n chia hết cho 24.
Quảng cáo
1 câu trả lời 2629
Hướng dẫn giải
Vì 2n + 1 là số chính phương. Mà 2n + 1 là số lẻ (do 2n là số chẵn)
Suy ra 2n + 1 chia cho 8 dư 1.
Do đó n chia hết cho 4.
Suy ra n + 1 là số lẻ
Nên n + 1 chia cho 8 dư 1.
Vậy n chia hết cho 8. (1)
Mặt khác:
2n + 1 + n + 1 = 3n + 2 chia cho 3 dư 2.
Do đó (n + 1) + (2n + 1) chia cho 3 dư 2.
Mà n + 1 và 2n + 1 là các số chính phương lẻ
Suy ra n + 1 và 2n + 1 chia cho 3 dư 1.
Nên n chia hết cho 3. (2)
Từ (1) và (2) suy ra n đều chia hết cho cả 3 và 8.
Mà (3; 8) = 1 (3 và 8 là hai số nguyên tố cùng nhau)
Vậy n chia hết cho 24.
Quảng cáo
Bạn cần hỏi gì?
Câu hỏi hot cùng chủ đề
-
107437
-
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
68061 -
Đã trả lời bởi chuyên gia
52846 -
Đã trả lời bởi chuyên gia
47344 -
Đã trả lời bởi chuyên gia
45400 -
Đã trả lời bởi chuyên gia
45045 -
Hỏi từ APP VIETJACK
Đã trả lời bởi chuyên gia
38412 -
Đã trả lời bởi chuyên gia
38191
Gửi báo cáo thành công!
